ASPS Conference Proceedings 1: 19-22 (2022)

Proceedings of
s
=

Atwaha Sci. Publ. Services

12th Structural Engineering Convention - An International Event (SEC 2022)

Available at https://asps-journals.com/index.php/acp

Application of novel refined mixed finite element method in the analysis of

composite laminated beams
G.D. Ramtekkarl’*, K. S. Patel®

'Department of Civil Engineering, Professor and Head, National Institute Technology Raipur, 492001, India
“Department of Civil Engineering, Assistant Professor, Government Engineering College, Raipur 492001, India

Paper ID - 010068

Abstract

This paper shows the application of refined finite element model developed by authors, which incorporate all the elastic equation
that are, equilibrium equation, constitutive equation and kinematic equation to be satisfied explicitly at nodes. The present method
considers the equilibrium equation for the refinement of the approximation function. Authors used the concept of mixed finite
element model by choosing stress and displacement as the primary variable, along with the equilibrium equation as a refinement
on approximation function. Ramtekkar [1] in his model restrict the arbitrary choosing of stress function by selecting the stress
variation from displacement derived space, by imposing the elastic relations on the variation and then used the Minimum Potential
Energy Principle to obtain the governing differential equation. In present work, authors satisfy the equilibrium equation at nodes
also by considering the body forces as variables inthe formulation which enables the model to satisfy the equilibrium equation
explicitly at the node. The formulation is validated by the elastic beam problem solvedby Pagano [2] for all three cases. Results
obtained are very accurate and also shows faster convergence over the Ramtekkar [1] model.
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1. Introduction

Mixed finite element formulation started gaining popularity
after the pioneering work in this field by Ressiner [3]. In
mixed finite element formulation, stress quantities are also
considered as a primary variable along with the
displacement quantities and solution is achieved through the
stationarity  principle of Hellinger-Reissner’s.  This
formulation proofs beneficial in cases wherethe
determination of stress is important. In displacement-based
formulation, stress quantities are derived by operating
kinematic relation and constitutive relation. This
methodleads to significant approximation in the calculation
of stresses. Displacement based finite element formulations
are not able to control the specific stress values in the
boundary of the domain.Determination of interlaminar
variation is very important in case of composite laminates as
interlaminar spaces are weak zone.

To find the through thickness variation of stress in
composite laminates many approaches have been usedby
various researchers, many of them considered the composite
laminate as equivalent single layer and analysed the
laminates which gave better results for the global behaviour
of the laminates , some of the ESL theories are First order
shear deformation theory higher-order shear deformation
theories by Reddy[4] and Kant[5]-[7]. To analyse the
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composite laminates for through thickness variation of
stresses Layer wise theories has been developed in which
mixed theories , zig-zag theory by Carrera [8]—[11]partial
discretisation approach by Kant[5], which could be grouped
under the axiomatic theory.

A generalised 2-dimensional plane stresses finite element
formulation was developed by Ramtekkar & Desai [1]. They
developed a 6 node mixed finite element model to analyse
the laminated composite beam. This element contains u, w,
0,4, TxzaS primaryvariables and used minimum potential
energy principle to formulate the governing differential
equation. Benefit of this formulation is that it could directly
calculate stress values and also could specify the predefined
stress values in theformulation to maintain the traction free
surface. This formulation also usesminimization principle
which is better than the stationarity (Hellinger-Reissner)
principle.

In present work which is a refinement over Ramtekkar [1]
model, authors consider the equilibrium as a constraint on
the approximation function. This formulation consider u, w,
0,4, Txzas primary variables along with the body forcesp,,
p, as refinement, term to improve the results. This gives the
6 quantities per node which could reduce to 4, after the
refinement of body forces part. This refinement could be
incorporated in the formulation by the static condensation.
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The present formulation includes equilibrium consideration
along with the constitutive and kinematic relation. Henceall
the elasticity condition has been satisfied with this
formulation, which develops results very close to an elastic
solution at nodes. Other than this, present formulation gives
fast convergence than Ramtekkar [1] formulation.

2. Formulation

To analyze the composite laminates beam in 2-dimesion 6
node element has been formulated as shown in Fig 2. u, w,
0,7, TyzWere chosen as primary variables at each node,
which ultimately leads to 24 variables in each element.
Equilibrium equation was taken for the refinement of
approximation function, which could be achieved through
static condensation process. For the formulation of the finite
element stiffness matrix approximation function were
chosen as shown in Eq.-1
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where:
ul(x' Z) = u(x, Z), uz(xlz) = W(x' Z) (3)

Variation of stress were derived from the Eq -1, by using the
kinematic and constitutive relation, and equilibrium
equation was imposed in the formulation by considering the
body forces and applying refinement through static
condensation.

Which leads to final equation to be solved of the form as

shown in Eq-4.
[KI{D} = {F} @)

Fig 1Schematic diagram of composite laminate simply supported beam
subjected to transverse sinusoidal loading (a) Laminated cross-ply beam
with reference axes, (b) representative section of the 3D beam in 2
dimension with support condition and loading direction, (c) representative
element with fibre orientation, (d) representative element with fibre
orientation to address cross-ply
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Fig 2 2-Dimensional 6 node plane stress element

where:
[K] = Z[K]e 5 [K]e — J:Lx J:Ly 7LZ [B]T [Q][B]dxdydz (5)
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[B]T = Strain matrix

[Q] = Constitutive matrix

[N]T = Interpolation matrix

{pp}.{p:} = Body force vector and traction force vecto

3. Numerical results and discussion

To validate the formulation, elastic solution of a 2D
composite laminate beam by Pagano [2] and solution given
by Ramtekkar [l]has been compared with the present
formulation. The first example is of a unidirectional
laminated beam subjected to sinusoidal loading in the
transverse direction. Material properties of the laminates are
given in Table 1 which has been taken from the Pagano [2].
The boundary condition for the different primary variables
at the different location has been given in Table 2. In the

Table 1: Material properties for the problem (Pagano [2])

E;=25x10° psi
Grr=2x10’ psi

E=1x10° psi
Vit =Vrr = 0.25

G 1=5x10 psi

Table 2: Boundary conditions for a different problem

Primary variable

Problem | Location u w Tyz g,

1 X=0 - 0 - -
X=a/2 0 - 0 -
Z=+d/2 - - 0 G(x)
Z=-d/2 - - 0 0

2 X=0 - 0 - -
X=a/2 0 - 0 -
Z=+d/2 - - 0 G(x)
Z=-d/2 - - 0 0
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series of the problem first, we solve the single layer
laminated simply supported composite beam, subjected to
sinusoidal load in the positive z direction and normalized
parameter were plotted and compare with the benchmark
solution in Fig 3. In the second case two layered cross ply
(0°/90°) laminated unsymmetrical composite beam as shown
in Fig 1, has been solved to get the variation of normalised
transverse displacement W, in- plane normal stress (o), and
transverseshear stress (7,,) as shown in Table 3, of double
layered laminates under cylindrical bending and results
obtained were plotted in Fig 4. Six node FE model with the
u, W, 0,,, T, as primary variable in each nodeand body
forces p,, p, as refinement parameter is used to solvethe
above problem, and results obtained arecompared with the
other benchmark solution available.

After, comparing the result from the benchmark solution we
could observe that present formulation gives better results
with the fewer element, hence reducing the matrix size upto
two third of Ramtekkar [1], formulation which is markable
saving in computational cost.

Table 3: Non-dimension alization coefficients
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Fig 3Variation of normalized (a) in-plane normal stress (o,); (b) in-plane
displacement (U); (c) transverse shear stress (Tyxz); (d) transverse normal
stress (0,) through the thickness of a simply supported laminated beam
with s=4, under sinusoidal loading
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Fig 4 Variation of normalized (a) in-plane normal stress (,); (b) in-plane
displacement (U); (c) transverse shear stress (T,,); (d) transverse normal
stress (0,) through the thickness of a simply supported laminated beam with
s=4 and laminated scheme (0°/90°), under sinusoidal loading

Table 4: Comparison of the maximum transverse displacement, the in-plane
normal and transverse shear stresses for simply supported laminated beam
under sinusoidal loading (laminate scheme: 0°/90°)

Prob Stress/ Present Pagano | Ramtekkar
Displacement | Analysis [2] [1]

2 _ad
GX(E,E) 3.8352 3.8359 3.8247
_a d
Oy (5, - 5) -29.7892 | -29.9745 | -29.9383
Tyz(max.) 2.7375 2.7300 2.7500
J— a
W .0 | 47952 | 47675 | 4.7636

4. Conclusion

A refined FE model has been presented. This formulation
shows excellent agreement with the elastic solution and
numerically comparable with Ramtekkar [1] model. This
model is unique in the sense that it explicitly incorporates
refinement from equilibrium equation, constitutive equation
and kinematic equation. This formulation is giving accurate
results in the lesser number of elements than Ramtekkar [1]
model. Present formulation has been develop dusing the
principle of minimum potential energy which is
minimization principle and taking stress parameters along
with the displacement as primary variable which allows the
freedom to specify the specific stress values. This model
gives the benefit of mixed formulation with the advantage of
minimization principlewhich could give the stable solution.
This refinement do not increase the number of primary
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variables but reduce the number of element required to
obtain the result more close to benchmark results.
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