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Abstract 

The main objective of this research is to present analytical solutions for free vibration analysis of moderately thick plates
graded materials. Finite element analysis using first
isoparametric lagrangian plate bending elements are used in the analysis. Young’s modulus and density per unit volume are ass
continuously through the plate thickness according to power
from other analytical and numerical techniques. The effect of different plate parameters such as aspect ratios, thickness to 
indices on the natural frequencies of FG rectangular plates is presented. Only clamped boundary conditions have been investigated. It is found that 
the frequency parameter depends considerably on the said parameters.
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1. Introduction 

Functionally graded materials (FGMs) are a type of novel 
composite material with varying material properties through 
their thickness. FGMs were adopted first in Japan in 1984 in 
the form of thermal barrier in a space plane project [1]. 
Thereafter this concept became most popular in Europe and 
Germany.  Different types of materials are considered as FGM 
materials i.e. steel, aluminium, polypropylene etc. 
gradation of material properties and thermal resistance 
behaviour, there are a wide variety of applications of these 
materials in different sectors such as in defence sector, 
automobile and aerospace engineering, naval structure and in 
medical field. Structures made up of laminated composites 
have high interlaminar stresses due to sudden change in 
material property across the interface which results in 
delamination. In case of FGMs, due to smooth and continuous 
varying material properties from one face to other, th
problem can be overcome and hence FGMs are usually 
superior to the conventional composite materials in 
mechanical behaviour. FGMs are typically made of a mixture 
of ceramic and metal and can resist high thermal load while 
maintaining toughness too.  
 
In 2000, Reddy [2] developed a theoretical formulation and 
finite element model based on third order shear deformation 
theory (TSDT) to analyse FGM plate structure. 
obtained the exact solution for a simply supported thin and 
thick FGM rectangular plate by employing FSDT and TSDT. 
Batra et al. [4] studied the free vibration analysis of the 
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The main objective of this research is to present analytical solutions for free vibration analysis of moderately thick plates
graded materials. Finite element analysis using first-order shear deformation plate theory (FSDT) has been us
isoparametric lagrangian plate bending elements are used in the analysis. Young’s modulus and density per unit volume are ass
continuously through the plate thickness according to power-law distribution. The results have been validated with the existing literature available 
from other analytical and numerical techniques. The effect of different plate parameters such as aspect ratios, thickness to 

FG rectangular plates is presented. Only clamped boundary conditions have been investigated. It is found that 
the frequency parameter depends considerably on the said parameters. 

Functionally graded, Free vibration, Finite element, First order shear deformation 

Functionally graded materials (FGMs) are a type of novel 
composite material with varying material properties through 

FGMs were adopted first in Japan in 1984 in 
the form of thermal barrier in a space plane project [1]. 
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lications of these 
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varying material properties from one face to other, this 
problem can be overcome and hence FGMs are usually 
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of ceramic and metal and can resist high thermal load while 

] developed a theoretical formulation and 
finite element model based on third order shear deformation 

FGM plate structure. Velet al.[3] 
the exact solution for a simply supported thin and 

oying FSDT and TSDT. 
] studied the free vibration analysis of the 

rectangular anisotropic FGM plate by using FSDT with finite 
element method. Hosseini-Hashemi 
exact closed-form frequency equation for free vibration 
analysis of circular and annular moderately thick FG plates 
based on the Mindlin’s theory. Efrain and Eisenberger [
obtained the equations of motion for annular FGM plate using 
FSDT and solved the vibration frequencies and modes for 
various boundary conditions. Nguyen 
FSDT model in which the transverse shear factors are 
obtained using energy equivalence methods. Talha and Singh 
[8] studied static response and free vibration analysis of FGM 
plates using higher order shear deformatio
and Hashemi [9] proposed a new exact analytical approach for 
free vibration analysis of a rectangular moderately thick FGM 
plate having two opposite edges simply supported using 
FSDT. Thai et al. [10] presented a simple FSDT for bending 
and free vibration analysis for FGM plates and concluded the 
same accuracy with conventional FSDT with least numbers of 
unknowns. Li et al. [11] 
functionally graded porous spherical shell 
shown that the proposed method has advantages of fast 
convergence, high calculation efficiency, high solution 
accuracy and simple boundary simulation. 

In this paper free vibration analysis of moderately thick 
functionally graded plates with clamped boundary conditions 
has been shown.  Due to high efficiency and simplicity, first
order shear deformation plate theory has been used in the 
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research. Nine noded isoparametric lagrangian plate bending 
elements are used in the analysis. Young’s modulus and 
density per unit volume are assumed to vary continuously 
through the plate thickness according to power-law 
distribution. The effect of different plate parameters such as 
aspect ratios, thickness to length ratios, different materials and 
gradient indices on the natural frequencies of FG rectangular 
plates is presented.  

2. Theoretical Formulation 
 

2.1. Geometric configuration and material properties 

The FGM plate with dual material properties continuously 
varied throughout the thickness are considered. The 
composition is varied from top surface (z = h/2) with ceramic 
to bottom surface (z = -h/2) with a metal as shown in Fig. 1. 
Linear elastic material behaviour with small displacements 
and strains are assumed in the analysis.  
 
The profile for volume fraction is taken from power law 
distribution expressed as below: 

𝑉௖ = ቀ
௭

௛
+

ଵ

ଶ
ቁ

ே

,   𝑉௠ + 𝑉௖ = 1  (1) 

where N is the power law index. The material properties i.e., 
modulus of elasticity, shear modulus, density and poisson’s 
ratio are function of z and given as  

𝑃(𝑧) = 𝑃௖𝑉௖ + 𝑃௠𝑉௠   (2) 

 

Fig. 1: Geometry of FGM plate 

 

Fig.2. Variation of Young’s modulus (Al/ZrO2) with non-
dimensional thickness for different values of the N 

Table-1. Material properties of the used FG plate 

          Material Properties 

E(GPa) ν ρ (kg/m3) 

Aluminium(Al) 70 0.3 2707 
Alumina(Al2O3) 380 0.3 3800 

Zirconia(ZrO2) 151 0.3 3000 

 

Where z is the thickness direction, Pc,Vc and Pm,Vm are the 
material properties and volume fractions of ceramic and 
metallic respectively. Fig. 2 indicates the change in variation 
in modulus of elasticity with change in power law index N. 
N=0 indicates pure ceramic and N=∞ indicates pure metallic.  
 

2.2. Displacement fields and strains 

In the present finite element analysis first order transverse 
shear deformation theory with constant transverse shear strain 
through the plate thickness has been used. Effect of rotary 
inertia is also taken in the element mass matrices. The 
displacement and rotation at any point is given by [12] 

𝑢(𝑥, 𝑦, 𝑧) =  𝑢଴(𝑥, 𝑦) + 𝑧𝜃௫,  
𝑣(𝑥, 𝑦, 𝑧) =  𝑣଴(𝑥, 𝑦) + 𝑧𝜃௬,  

𝑤 = 𝑤଴ 
∅௫ =  𝜃௫ − 𝑤,௫,  ∅௬ =  𝜃௬ − 𝑤,௬  (3) 

Here, 𝑢଴(𝑥, 𝑦), 𝑣଴(𝑥, 𝑦) and 𝑤଴  are corresponding mid plane 
displacements.x and y, are rotations along x axis and y axis 
respectively. ∅௫ and ∅௬ are shear strain in x and y directions. 
linear strains at any point are expressed as [12]. 
 
𝜖௫ = 𝑢,௫ = 𝑢଴,௫ + 𝑧𝜃௫,௫ =  𝜖௫

଴ + 𝑧𝐾௫ 

𝜖௬ = 𝑣,௬ = 𝑣଴,௬ + 𝑧𝜃௬,௬ =  𝜖௬
଴ + 𝑧𝐾௬ 

𝛾௫௬ = 𝑢,௬ + 𝑣,௫ = 𝑢଴,௬ + 𝑣଴,௫ + 𝑧(𝜃௫,௬ + 𝜃௬,௫) =  𝜖௫௬
଴ + 𝑧𝐾௫௬ 

𝛾௫௭ = ∅௫; 𝛾௬௭ = ∅௬ ; 𝜀௭ = 0  (4) 

where, 𝐾௫  and 𝐾௬  are the curvatures in x-z and y-z planes, 

respectively, while𝐾௫௬ is the cross curvature in x-y plane.  

The constitutive matrix [D] is given by [12, 13]: 

[D]= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐴ଵଵ 𝐴ଵଶ 𝐴ଵ଺ 𝐵ଵଵ 𝐵ଵଶ 𝐵ଵ଺ 0 0
𝐴ଵଶ 𝐴ଶଶ 𝐴ଶ଺ 𝐵ଵଶ 𝐵ଶଶ 𝐵ଶ଺ 0 0
𝐴ଵ଺ 𝐴ଶ଺ 𝐴଺଺ 𝐵ଵ଺ 𝐵ଶ଺ 𝐵଺଺ 0 0
𝐵ଵଵ 𝐵ଵଶ 𝐵ଵ଺ 𝐷ଵଵ 𝐷ଵଶ 𝐷ଵ଺ 0 0
𝐵ଵଶ 𝐵ଶଶ 𝐵ଶ଺ 𝐷ଶଵ 𝐷ଶଶ 𝐷ଶ଺ 0 0
𝐵ଵ଺ 𝐵ଶ଺ 𝐵଺଺ 𝐷ଵ଺ 𝐷ଶ଺ 𝐷଺଺ 0 0

0 0 0 0 0 0 𝐴ସସ 𝐴ସହ

0 0 0 0 0 0 𝐴ସହ 𝐴ହହ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Here,𝐴௜௝ , 𝐵௜௝,𝐷௜௝ୀ ∫ 𝑐௜௝

೓

మ

ି
೓

మ

[1, 𝑧, 𝑧ଶ] dz     (i, j = 1, 2,  6) 

and 𝐴௜௝ = 𝛼 ∫ 𝑐௜௝

೓

మ

ି
೓

మ
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Here 𝛼 is the shear correction factor taken as 5/6 [14]. 

2.3. Finite Element Formulation 

Using nine noded isoparametric element, the linear stiffness 
matrix is given by  

[𝐾௘] = ∫ ∫ [𝐵]்[𝐷][𝐵]|𝐽|dξ dη
ଵ

ିଵ

ଵ

–ଵ
(5) 

where [𝐵௜] is linear strain-displacement matrix given by [14], 

[𝐵௜]= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑁௜,௫ 0 0 0 0

0 𝑁௜,௬ 0 0 0

𝑁௜,௬ 𝑁௜,௫ 0 0 0

0 0 0 𝑁௜,௫ 0

0 0 0 0 𝑁௜,௬

0 0 0 𝑁௜,௬ 𝑁௜,௫

0 0 𝑁௜,௬ 0 𝑁௜

0 0 𝑁௜,௫ 𝑁௜ 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (i = 1 to 9)(6) 

The element mass matrix with rotary inertia is given by [13],  
[𝑀௘] = ∬[𝑁]் [𝜌][𝑁]|𝐽|dξ dη  (7)  
in which, inertia matrix 

[𝜌] = 

⎣
⎢
⎢
⎢
⎡

𝐼
0 𝐼 𝑆𝑦𝑚𝑚

0 0 𝐼
𝑃 0 0 𝑄
0 𝑃 0 0 𝑄 ⎦

⎥
⎥
⎥
⎤

, where, 

𝐼, 𝑃, 𝑄 = ∫ 𝜌(𝑧) (1, 𝑍, 𝑍ଶ)𝑑𝑧,
೓

మ

ି
೓

మ

(8) 

𝜌(𝑧) being the density at a distance z. Ni = Shape function at a 
node i. ξ , η = Local natural co-ordinates of the element. 
The governing equation for free vibration analysis is given by 

൫[𝐾’]– 𝜔௡
ଶ[𝑀]൯{𝛿} = 0   (9) 

3. Numerical Study 

A FORTRAN program with nine noded lagrangian plate 
bending element is developed for this study. Study of 
validation with published literature is presented in this section. 
After verification of the proposed formulation, the program is 
used to study the dynamic behaviour of FGM moderately 
thick rectangular plate structure.  

3.1. Validation Study 

In this section, the first three non-dimensional natural 
frequencies of an all side clamped (CCCC) FG square plate 
(1m X 1m) made up of Al/ZrO2 is found out for different 
power law index (N) and side to thickness ratio (a/h) and 
compared with Talha et al. [8] in Table 2. Another case of FG 
square plate made up of (Al/Al2O3) with different boundary 
condition (SCSC-two opposite sides are clamped and rest are 
simply supported) have been studied and compared with 
Hashemi et al. [9] in Table 3. It is found that the result 
matches fully with [9] as seen in Table 3 though there is a 
small discrepancy when compared with [8] in Table 2.  The 
reason is Talha et al. [8] have used higher order shear 
deformation theory (HSDT) whereas Hashemi et al. [9] used 
first order shear deformation theory in their formulation.  

Table-2.  Variation of the non-dimensional frequency parameter (𝜔ഥ = ඥ12(1 − 𝜗ଶ)𝜌௖ 𝜔
ଶ𝑎ଶ𝑏ଶ 𝜋ସ⁄ 𝐸௖ℎଶ)of CCCC square Al/ZrO2 FG plate 

 

Table-3. Variation of the non-dimensional frequency parameter (𝛽 = 𝜔𝑎ଶට
𝜌஼

𝐸஼
ൗ /ℎ)for SCSC square Al/Al2O3 plate 

 

 

 

 

 

a/h Mode 
N=0 0.5 1 5 10 N=∞ 

PRESENT [8] PRESENT [8] PRESENT [8] PRESENT [8] PRESENT [8] PRESENT [8] 

10 
  
  

1 3.45 3.42 3.12 3.09 2.97 2.94 2.76 2.72 2.69 2.65 2.48 2.48 

2 6.59 6.7 5.96 6.08 5.68 5.79 5.25 5.3 5.1 5.15 4.73 4.87 

3 6.59 6.7 5.96 6.08 5.68 5.79 5.25 5.3 5.1 5.15 4.73 4.87 

20 
  
  

1 3.72 3.73 3.34 3.37 3.19 3.21 2.98 2.99 2.90 2.91 2.66 2.72 

2 7.43 7.82 6.69 7.07 6.38 6.73 5.96 6.24 5.79 6.07 5.32 5.69 

3 7.43 7.82 6.69 7.07 6.38 6.73 5.96 6.24 5.79 6.07 5.32 5.69 

    N=0 0.5 1 5 10 

a/h MODE PRESENT [9] PRESENT [9] PRESENT [9] PRESENT [9] PRESENT [9] 

10 

1 8.07 8.07 6.88 6.88 6.22 6.22 5.65 5.65 5.29 5.29 

2 14.87 14.90 12.69 12.70 11.46 11.50 10.39 10.40 9.72 9.73 

3 17.93 17.90 15.37 15.40 13.91 13.90 12.61 12.60 11.71 11.70 

20 

1 8.57 8.57 7.27 7.27 6.56 6.56 5.96 5.96 5.63 5.63 

2 16.07 16.10 13.64 13.60 12.30 12.30 11.18 11.20 10.55 10.60 

3 20.07 20.10 17.06 17.10 15.40 15.40 13.98 14.00 13.17 13.20 
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Table-4. Non-dimensional frequency parameter(𝛽 = 𝜔𝑎ଶට
𝜌஼

𝐸஼
ൗ /ℎ)of FGM(Al/ZrO2) for all boundary conditions (a/b=1) 

      Al/ZrO2 Al/Al2O3 
  

h/a MODE 0 0.5 1 5 10 œ 0 0.5 1 5 10 œ 
BC 

CCCC 

0.05 

1 10.59 9.53 9.09 8.50 8.27 7.59 10.59 8.99 8.11 6.95 6.71 5.38 

2 21.16 19.06 18.17 16.97 16.51 15.17 21.16 17.99 16.24 13.88 13.38 10.76 

3 21.16 19.06 18.17 16.97 16.51 15.17 21.16 17.99 16.24 13.88 13.38 10.76 

0.1 

1 9.84 8.88 8.47 7.87 7.65 7.06 9.84 8.41 7.60 6.45 6.18 5.01 

2 18.79 16.99 16.18 14.96 14.54 13.47 18.79 16.11 14.59 12.26 11.70 9.55 

3 18.79 16.99 16.18 14.96 14.54 13.47 18.79 16.11 14.59 12.26 11.70 9.55 

0.2 

1 8.03 7.29 6.94 6.36 6.17 5.75 8.03 6.95 6.31 5.23 4.94 4.08 

2 14.02 12.75 12.14 11.04 10.71 10.05 14.02 12.20 11.11 9.06 8.52 7.13 

3 14.02 12.75 12.14 11.04 10.71 10.05 14.02 12.20 11.11 9.06 8.52 7.13 

CCCF 

0.05 

1 7.08 6.37 6.07 5.69 5.53 5.07 7.08 6.00 5.41 4.65 4.49 3.60 

2 11.68 10.52 10.03 9.38 9.13 8.37 11.68 9.92 8.95 7.67 7.40 5.94 

3 18.31 16.49 15.72 14.69 14.29 13.13 18.31 15.56 14.04 12.01 11.58 9.31 

0.1 

1 6.69 6.03 5.75 5.35 5.21 4.79 6.69 5.70 5.15 4.38 4.21 3.40 

2 10.78 9.73 9.27 8.62 8.38 7.73 10.78 9.21 8.32 7.04 6.76 5.48 

3 16.42 14.84 14.14 13.09 12.72 11.77 16.42 14.07 12.74 10.72 10.24 8.35 

0.2 

1 5.64 5.11 4.87 4.48 4.35 4.04 5.64 4.87 4.42 3.67 3.49 2.87 

2 8.71 7.89 7.51 6.89 6.70 6.24 8.71 7.50 6.79 5.60 5.33 4.43 

3 11.90 10.97 10.44 9.24 8.93 8.53 11.90 10.68 9.81 7.72 7.05 6.05 

CFCF 

0.05 

1 6.58 5.92 5.64 5.28 5.14 4.71 6.58 5.58 5.03 4.32 4.18 3.34 

2 7.76 6.99 6.66 6.24 6.07 5.57 7.76 6.59 5.94 5.10 4.93 3.95 

3 12.68 11.41 10.88 10.18 9.90 9.09 12.68 10.76 9.70 8.32 8.03 6.45 

0.1 

1 6.24 5.63 5.37 5.00 4.86 4.48 6.24 5.32 4.81 4.09 3.94 3.18 

2 7.27 6.56 6.25 5.82 5.66 5.21 7.27 6.20 5.60 4.76 4.57 3.70 

3 11.67 10.52 10.03 9.32 9.07 8.36 11.67 9.95 8.98 7.60 7.31 5.93 

0.2 

1 5.31 4.81 4.58 4.21 4.09 3.81 5.31 4.58 4.16 3.47 3.29 2.70 

2 6.02 5.46 5.19 4.77 4.63 4.31 6.02 5.19 4.70 3.89 3.70 3.06 

3 8.88 8.18 7.79 6.89 6.66 6.37 8.88 7.97 7.31 5.77 5.26 4.52 

CFFF 

0.05 

1 1.05 0.94 0.90 0.84 0.82 0.75 1.05 0.89 0.80 0.69 0.67 0.53 

2 2.52 2.27 2.16 2.03 1.97 1.81 2.52 2.14 1.93 1.66 1.60 1.28 

3 6.34 5.70 5.43 5.09 4.96 4.54 6.34 5.37 4.84 4.16 4.03 3.22 

0.1 

1 1.04 0.93 0.89 0.83 0.81 0.74 1.04 0.88 0.79 0.68 0.66 0.53 

2 2.44 2.20 2.09 1.96 1.90 1.75 2.44 2.07 1.87 1.60 1.54 1.24 

3 6.08 5.48 5.22 4.87 4.74 4.36 6.08 5.17 4.66 3.98 3.84 3.09 

0.2 

1 1.01 0.91 0.87 0.81 0.79 0.72 1.01 0.86 0.77 0.66 0.64 0.51 

2 2.22 2.01 1.91 1.78 1.73 1.59 2.22 1.90 1.71 1.45 1.39 1.13 

3 3.29 3.03 2.89 2.56 2.47 2.36 3.29 2.96 2.75 2.15 1.95 1.67 
 

 

3.2. Case study 1: Study of square FG plate (a/b = 1) 

In this section, the behaviour of a square FG plate (1m X 1m) 
is studied for variation in thicknesses and power law index 
N.Different boundary conditions taken in the analysis are as 
follows:  

CCCC- All side clamped 
CFCF – Two opposite sides clamped 
CCCF – One edge free, Other three edges clamped 
CFFF – Clamped only at one edge 
Two different materials i.e., Al/ZrO2 and Al/Al2O3have been 
chosen in the analysis. The non-dimensional frequency 

parameters ൭𝛽 =
ఠ௔మට

ఘ಴
ா಴

ൗ

௛
൱are tabulated in Table 4. 

From Table 4, it is seen that with increase in value of N, the 
non-dimensional natural frequency reduces. The rate of 
reduction is more for Al/Al2O3. With increase in h/a ratio, 
stiffness increases. Hence natural frequency also increases. 
non-dimensional frequency decreases, as the thickness term is 
present in the denominator. CCCC case gives highest stiffness 
as degree of edge constraints is more. CFFF or cantilever case 
gives the least frequency. For square plate with symmetrical 
boundary conditions (CCCC) the second and third mode 
frequencies are same. This is not seen for other non-
symmetric boundary conditions. 
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3.3. Case study 2: Study of rectangular FG plate (a/b 
= 2) 

In this section, the behaviour of a rectangular FG plate (2m 
X 1m) is studied for variation in thicknesses and power law 
index N. Different boundary conditions taken in the analysis 
are as follows:  

CCCC- All side clamped 
CFCF – Only longer sides clamped 
CCCF – One short edge free, Other three edges clamped 
FCCC - One long edge free, Other three edges clamped 
CFFF – Clamped only at the longer edge 
FCFC – Two short edges clamped 
 
Two different materials i.e., Al/ZrO2 and Al/Al2O3have been 
chosen in the analysis. The non-dimensional frequency 
parameters are tabulated in Table 5. First three mode shapes 
for rectangular plate have been plotted in Fig. 3. Non-
dimensional frequency reduces in the following order-
CCCC, CCCF, CFCF, FCCC, FCFC, CFFF.  It is observed 
that with increase in edge constraints natural frequency 
increases.  For CCCF and CFCF the difference in frequency 

is very less. In CCCF only one short edge is made clamped 
from free (CFCF) case, thus do not contribute much in the 
stiffness calculation.   From the mode shape it is seen that 
mainly bending occurs in the structure except for mode 2 in 
CFFF case where a twisting mode shape is observed.  
 

 

1. Conclusion 

In this paper free vibration behaviour of rectangular FGM 
plate using First order shear deformation theory has been 
performed. Different boundary conditions combining free and 
clamped edges are taken into considerations. Validation study 
is carried out to verify the accuracy of the present formulation. 
It is observed that with increase in power law index N, natural 
frequency decreases exponentially. 

The rate of decrease is sharp for Al/Al2O3.  With increase in 
thickness by side ratio, stiffness of the structure and hence 
natural frequency increases. As a result, non-dimensional 
frequency parameter decreases. Increase in edge constraints 
also increases stiffness of the structure as expected.

 

BC MODE1 MODE2 MODE3 

CCCC 

   

CCCF 

 
  

CFCF 

 

 

 

 

FCFC 

  
 

FCCC 

 
 

 

CFFF 

   

 

Fig. 3. First three mode shapes for rectangular FG (Al/ZrO2) plate (a/b = 2) for h/a=0.1, N=1 
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Table-5. Non-dimensional frequency parameter(𝛽 = 𝜔𝑎ଶට
𝜌஼

𝐸஼
ൗ /ℎ)of FGM (Al/ZrO2) for all boundary conditions (a/b = 2) 

      Al/ZrO2 Al/Al2O3 
  

h/a MODE 0 0.5 1 5 10 œ 0 0.5 1 5 10 œ 
BC 

CCCC 

0.05 
1 27.59 24.88 23.72 22.09 21.48 19.78 27.59 23.52 21.25 18.09 17.38 14.03 
2 35.26 31.81 30.32 28.21 27.44 25.28 35.26 30.08 27.18 23.09 22.18 17.93 
3 48.64 43.90 41.83 38.87 37.80 34.87 48.64 41.54 37.54 31.81 30.51 24.74 

0.1 
1 23.29 21.12 20.12 18.49 17.95 16.70 23.29 20.10 18.26 15.19 14.40 11.85 
2 29.30 26.57 25.31 23.24 22.57 21.00 29.30 25.30 22.96 19.07 18.08 14.90 
3 39.31 35.67 33.97 31.12 30.22 28.18 39.31 33.99 30.86 25.51 24.16 19.99 

0.2 
1 16.10 14.71 14.00 12.64 12.25 11.54 16.10 14.14 12.94 10.45 9.73 8.19 
2 20.02 18.27 17.39 15.71 15.23 14.35 20.02 17.55 16.03 12.91 12.06 10.18 
3 25.10 23.07 21.91 19.39 18.78 17.99 25.10 22.35 20.50 15.82 14.59 12.77 

CCCF 

0.05 
1 25.47 22.97 21.90 20.40 19.84 18.26 25.47 21.71 19.62 16.70 16.05 12.96 
2 29.00 26.15 24.93 23.21 22.57 20.79 29.00 24.73 22.34 19.00 18.25 14.75 
3 37.11 33.47 31.90 29.68 28.87 26.60 37.11 31.66 28.60 24.28 23.32 18.87 

0.1 
1 21.60 19.58 18.65 17.14 16.65 15.48 21.60 18.64 16.93 14.09 13.36 10.98 
2 24.29 22.02 20.98 19.27 18.72 17.41 24.29 20.96 19.02 15.80 14.99 12.35 
3 30.65 27.78 26.45 24.30 23.61 21.97 30.65 26.43 23.95 19.86 18.87 15.59 

0.2 
1 14.92 13.63 12.97 11.70 11.34 10.69 14.92 13.11 11.99 9.67 9.00 7.59 
2 16.68 15.20 14.46 13.07 12.69 11.96 16.68 14.57 13.26 10.65 9.99 8.48 
3 20.19 18.53 17.59 15.61 15.11 14.47 20.19 17.87 16.25 12.78 11.80 10.27 

CFCF 

0.05 
1 25.09 22.63 21.57 20.10 19.54 17.99 25.09 21.39 19.32 16.46 15.82 12.76 
2 26.19 23.62 22.51 20.97 20.39 18.77 26.19 22.33 20.17 17.17 16.50 13.32 
3 30.42 27.44 26.15 24.34 23.67 21.81 30.42 25.95 23.44 19.92 19.13 15.47 

0.1 
1 21.32 19.33 18.41 16.92 16.43 15.28 21.32 18.40 16.71 13.92 13.19 10.84 
2 22.10 20.03 19.08 17.54 17.03 15.84 22.10 19.07 17.31 14.40 13.65 11.24 
3 25.30 22.93 21.84 20.06 19.49 18.14 25.30 21.82 19.78 16.42 15.59 12.87 

0.2 
1 14.74 13.47 12.83 11.57 11.21 10.57 14.74 12.97 11.88 9.58 8.91 7.50 
2 15.19 13.86 13.19 11.91 11.55 10.89 15.19 13.31 12.14 9.75 9.12 7.73 
3 17.30 15.74 14.96 13.56 13.18 12.40 17.30 15.05 13.63 10.95 10.34 8.80 

CFFF 

0.05 
1 4.19 3.77 3.59 3.37 3.28 3.00 4.19 3.55 3.20 2.75 2.66 2.13 
2 6.28 5.66 5.39 5.05 4.91 4.50 6.28 5.33 4.81 4.13 3.99 3.20 
3 11.80 10.62 10.12 9.47 9.22 8.46 11.80 10.02 9.03 7.74 7.47 6.00 

0.1 
1 4.08 3.67 3.50 3.27 3.19 2.92 4.08 3.46 3.12 2.68 2.58 2.07 
2 5.95 5.37 5.11 4.77 4.64 4.27 5.95 5.07 4.57 3.90 3.75 3.03 
3 10.90 9.83 9.36 8.71 8.48 7.81 10.90 9.29 8.38 7.10 6.83 5.54 

0.2 
1 3.74 3.38 3.22 2.99 2.91 2.68 3.74 3.19 2.88 2.44 2.34 1.90 
2 5.14 4.64 4.42 4.08 3.97 3.68 5.14 4.40 3.98 3.33 3.18 2.61 
3 8.18 7.53 7.17 6.34 6.13 5.86 8.18 7.33 6.78 5.29 4.83 4.16 

FCCC 

0.05 
1 9.10 8.19 7.81 7.31 7.11 6.52 9.10 7.73 6.97 5.98 5.77 4.63 
2 20.12 18.13 17.28 16.14 15.70 14.42 20.12 17.11 15.44 13.20 12.72 10.23 
3 29.12 26.24 25.01 23.33 22.70 20.87 29.12 24.78 22.35 19.05 18.35 14.81 

0.1 
1 8.48 7.65 7.29 6.78 6.60 6.08 8.48 7.24 6.54 5.55 5.33 4.31 
2 17.87 16.15 15.39 14.23 13.83 12.81 17.87 15.32 13.86 11.65 11.13 9.09 
3 24.96 22.57 21.48 19.83 19.28 17.89 24.96 21.40 19.32 16.09 15.39 12.69 

0.2 
1 7.03 6.37 6.06 5.58 5.42 5.04 7.03 6.06 5.49 4.56 4.34 3.57 
2 13.37 12.16 11.57 10.54 10.23 9.59 13.37 11.62 10.55 8.60 8.12 6.80 
3 17.56 15.74 14.84 13.38 13.11 12.59 17.56 14.87 13.28 10.44 9.88 8.93 

FCFC 

0.05 
1 6.53 5.88 5.60 5.25 5.11 4.68 6.53 5.54 5.00 4.29 4.15 3.32 
2 10.33 9.30 8.87 8.29 8.07 7.41 10.33 8.78 7.92 6.78 6.54 5.25 
3 17.60 15.85 15.11 14.12 13.74 12.62 17.60 14.96 13.50 11.55 11.14 8.95 

0.1 
1 6.20 5.59 5.33 4.96 4.83 4.44 6.20 5.28 4.77 4.07 3.91 3.15 
2 9.37 8.46 8.06 7.48 7.27 6.72 9.37 8.00 7.22 6.09 5.85 4.77 
3 15.84 14.31 13.64 12.30 11.89 11.35 15.84 13.57 12.28 10.34 9.41 8.05 

0.2 
1 5.28 4.78 4.56 4.19 4.07 3.78 5.28 4.55 4.13 3.44 3.27 2.68 
2 7.29 6.57 6.22 5.68 5.55 5.22 7.29 6.20 5.55 4.45 4.25 3.71 
3 7.92 7.35 7.04 6.24 5.99 5.68 7.92 7.22 6.79 5.45 4.94 4.03 
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