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Abstract 

This paper consists of a thermal stress analysis of power law varied functionally graded laminate. In this paper, the exact temperature field 
obtained by the heat conduction equation, and the same has used for thermal stress analysis. In addition,a simple power law varied temperature 
field also considered for thermal stress analysis. Heat conductivity and coefficient of thermal expansion have graded as power-law along with 
the thickness of the domain. The Poisson ratio has kept constant. The numerical solution scheme involved the conversion of the boundary value 
problem to the initial value problem and the use of the 4th-order Runge Kutta-Grill algorithm for numerical integration. The parametric study 
includes a thick to thin laminate by considering various aspect ratios.  
 
Keywords: FGM, semi-analytical method, BVP, thermal loading, power law, Heat conduction

1. Introduction 
In the laboratory of Japan in 1984, the first functionally 

graded material (FGM) has invented. The requirement for 
conflicting material properties has demanded by various 
industries, and hence the use of pure metal has reduced over 
time. It has replaced next by alloy then by laminated 
composites, and both of these have certain drawbacks like 
melting points are different in alloys and problems of 
delamination occurs in the laminated composite. So, to 
overcome such issues, in the thermal area, novel 
functionally graded (FG) materials have used. FG material 
composed of metals on one side and ceramic on the other 
side. The FGM has toughened and strengthened by the 
metallic composition, while the ceramic in the FGM offers 
thermal barrier effects and protects the metal from corrosion 
and oxidation. The composition of metal or ceramic has 
graded in one or particular direction(s) of FG laminate. In 
FGM, material variations generally considered to be varied 
as per exponential law (called E-FGM), power law (called 
P-FGM), and by both exponential and power law variation 
(called S-FGM). FGM has wide applications in automotive, 
aerospace, biomedical, and sports, hence many researchers 
have attracted more to study various properties and its 
behavior under different kinds of loadings. 

Equivalent single layer (ESL) theories have often used 
for analyzing the structures. Kiani and Eslami [1] studied 
the buckling behavior of the FG beam with the help of the 
Euler Bernoulli (EBT) beam theory under a different type of 
thermal loading. With the help of first-order shear 
deformation theory (FOST), Chakraborty et al. [2] 
developed a new finite beam model for comparison of pure 
metal behavior with FG beam under static, free vibration 

and wave propagation problems. Further higher-order shear 
deformation theory (HOST) has been used by Benatta et al. 
[3] and presented flexural behavior under three-point 
loading. Kadoli et al. [4] carried out stress and deflection 
analyses for various combinations of metal-ceramic, which 
has achieved by different power law exponent. HOST 
requires shear correction factors, and to avoid this, a new 
HOST similar to EBT has developed for dynamic analysis 
by Thai and Vo [5]. Wattanasakulpong et al. [6] used third-
order shear deformation theory to study buckling and 
vibration of power law varied FG beam. A comparison of all 
ESL theories has carried out by Ben-Oumrane et al. [7] for 
S-FGM thick beam subjected to uniformly distributed loads. 
Apart from ESL theories, many investigators proposed other 
methods also, like with the help of the FE model axially and 
transversally loaded FG beam analysis has carried out by 
Trinh et al. [8]. Similarly, Pietro et al. [9] developed a 
unified approach for analysis of the FG beam in which 
materials have either graded linear, parabolic, and cubic 
variations. 

In this paper, an attempt has made to extent semi-
analytical formulation developed by Pendhari et al. [10] for 
thermal stress analysis of FG laminates. The partial 
differential equation (PDE) of heat conduction has used to 
obtain the exact variation of temperature field through the 
thickness of the laminate. This obtained temperature has 
used to analyze FG laminate by adopting a semi-analytical 
approach again. For the parametric study, the simple power-
law varied temperature has also considered to find out 
stresses generated in the laminate. 



Kulkarni and Pendhari / ASPS Conference Proceedings 1: 63-68 (2022) 
 

64 

 
Developed analytical models include the formation of 

two-point BVP governed by a group of coupled first-order 
ODE's (Eqn. 1) within the thickness of the element. 
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Here  3( )y x  is an n-dimensional vector of primary variables 

whose number (n) equals the order of PDE, for heat 
conduction formulation, 'n' is equal to two whereas for stress 

analysis, is equal to the four.  3 ,( ) n nA x  Coefficient 

matrix (a function of material properties in the thickness 
direction), and 3( )p x  is an n-dimensional vector of non-

homogenous (loading). It has to note that loading terms 
include only body loads such as inertia loads, thermal loads,  
electric loads, etc. whereas surface loads have incorporated 
into the formulation during solution procedure as a 
boundary condition.  

2. Mathematical Formulations 

Consider a single layer of thickness 'h,' FG beam of 

length 'a' in ' 1x ' direction with finite extent along ' 2x ' 

direction. FG beam has supported at two opposite edges ( 1x
=0, a) and exposed to the thermal load. This thermal load 
varies along with the length 'a' in sinusoidal form. 
 
 
Under such a situation, laminate is in -stress condition of 
elasticity in the 1x - 3x plane (Fig.1). Coefficient of thermal 
expansion   , Elastic modulus  E and coefficient of 
thermal conductivity    have varied only through the 
thickness of laminate accordingly to a power law as, 
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Where, bE  and tE  be Young's modulus of elasticity, b and 

t  be constant of thermal expansion, b and t are the 

coefficient of thermal conductivity at the bottom and top 
surface of the beam, respectively. Further, it has considered 
that the FG material has uniform properties at every point, 
and the poison ratio has deemed to be constant through the 
thickness of the laminate. A thermal load has assumed with 
only known temperature value at the top and bottom of the 
laminate surface  3 3  at  0   and    at  b tT T x T T x h   
, which has indicated in fig. 1. Detail of heat conduction 
formulation omitted here to avoid lengthiness of paper. The 
next paragraph gives the formulation for thermal stress 
analysis. 

 

2.1 2D Stress Analysis Formulation by Semi-Analytical 
formulation 

As per the primary linear theory of elasticity, two-
dimensional (2D) strain-displacement relationship, 
equilibrium equations and constitutive relations in the 
thermo-elastic environment can be written as, 
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and, 
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Here 3( )x T  are the free thermal expansion strain 

generated due to temperature variation, and to avoid further 

complications in the analysis, the body forces,
1 3
,  x xB B  per 

unit volume in 
1

x and 
3

x directions, respectively, have 

ignored. 

The reduced material coefficients, ijC for plane stress 

condition, are, 
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The above Eqns. (3), (4) and (5) contains eight unknowns in 

eight equations which have ,u  ,w
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and
1 3x x After a simple algebraic reduction of the upper sets 

of equations, a collection of PDEs contains only four 

dependent variables ,u  ,w
3
   x and 

1 3x x received as 

follows, 
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With the help of boundary conditions at the support 0x   
and x a Fourier trigonometric series expansion, the 
PDE's given in equation (6) can be converted into coupled 
first-order ODE as, 
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and from the fundamental relations of the theory of 
elasticity, it can be given that, 
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Further, applied transverse loading on the top of the 

laminate and thermalvariation in the direction 1x  is also 

express in sinusoidal form as, 
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Putting Eqns. (7), (8) and (9), and its differential coefficients 
into Eqn. (6), ordinary differential equations (ODEs) as 
mentioned in equation (10) have received, 
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Eqn. (10) indicate the ruling two-point BVP in ODE's in the 

domain 30 x h   with stress components known at the 

upper and downward surfaces of a beam. 

3. Numerical Study 

A computer program has developed to solve heat 
conduction formulation as well as stress formulation. We 
know the temperature at the top is 3000 C where ceramic has 
faced, and200 C at the bottom where metal has faced, 
through thickness temperature distribution has determined 
with the help of heat conduction solution. Further thermal 
stress analysis has carried out for exact through thickness 
distributed temperature (Exact model). A similar exercise 
has carried out for assumed power law through thickness 
variation of temperature (PL Model). While performing 
these exercises, material properties, as mentioned in Table 2, 
has used.  
Different power indices have considered ( 0)k   for 

ceramic ( 10)k   for metals. Based on the convergence 

studies, around20 to 30 steps have used through the 
thickness of laminate for numerical integration. Variations 

in in-plane displacements  nu , transverse displacement

 nw ,in-plane normal stress  x , and transverse shear 

stress  xz for different power indices and for aspect ratio 

five has plotted, which has indicated through fig. 1 to fig. 4, 
respectively.  
 

Table-2. Material properties 

Ref. Ji Ying et al. [11] 
 

At top, 
1 6 1 1427 , =65  : , 4.3 10 mz h SiC E GPa K W K        

 
At Bottom 

1 -6 1 10 70 , =233 , =23.4 1Al   : 0 mz E GPa K W K        
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From fig.2 and fig.3, it has observed that in-plane and 
transverse displacementvariations showing nonlinear nature. 
As the power indices ( )k increase from 0 to 10,the 

difference between the Exact Model and PL Modelresults go 
on reducing. And ( 0.8)k  both these variations coincide 

with each other. For the power index ( 2)k  and higher, 

this PL Model results overestimate Exact Model results. 
Moreover, this observation has partially valid for transverse 
displacement(fig.3).Fig.4 and Fig.5 shows variations for in-
plane normal stress and transverse shear stress, respectively. 
From fig.4, it has observed that in-plane normal stress 

followeda parabolic pattern,whereas the cosine and sine 
curve noticed for transverse shear stress (Fig.5). 

Further, it has observed that as the power indices ( )k
increase from 0 to 10 difference between Exact Model and 
PL. Model,two results go on reducing, and for ( 0.8)k 
both these variations, coincide with each other. The peak of 
results of graphs for parabolic as well as sine or cosine curve 
also shifted to the upper side with increasing power indices. 
As volume fraction becomes more metallic as power indices 
increased,the opposite distribution has noticed for both the 
models as expected, and it hasindicated by ( 10)k  graphs 

of fig.4 and 5. 

 
Fig.2Variation of normalized in-plane displacement nu  through the thickness of power law 

varied functionally graded beam under plane-stress condition subjected to thermal load.

 

Fig.3Variation of normalized transverse displacement nw through the thickness of power law 

varied functionally graded beam under plane-stress condition subjected to thermal load. 
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Fig.4Variation of normalized in-plane normal stress x through thickness of power law 

varied functionally graded beam under plane-stress condition subjected to thermal load. 

 

Fig.5 Variation of normalized transverse shear stress xz  through thickness of power law 

varied functionally graded beam under plane-stress condition subjected to thermal load. 

4. Concluding Remarks 

Semi-analytical formulations based on a two-point 
boundary value problem governed by a set of coupled first-
order ordinary differential equations (ODEs) for thermal 
stress analysis have discussed here. Comparison between 
power law varied thermal stress and stress generated due to 
actual temperature distribution, which has gained 
throughheat conduction formulation for various power 
indices have carried out. Effect of power indices on 
displacements and stresses have documented here.Metals 
are more sensitive for temperatures, as an increase in 

metallic nature in volume fraction in FG material, 
increases more fluctuations in stresses. 
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