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Abstract

This paper consists of a thermal stress analysis of power law varied functionally graded laminate. In this paper, the exact temperature field
obtained by the heat conduction equation, and the same has used for thermal stress analysis. In addition,a simple power law varied temperature
field also considered for thermal stress analysis. Heat conductivity and coefficient of thermal expansion have graded as power-law along with
the thickness of the domain. The Poisson ratio has kept constant. The numerical solution scheme involved the conversion of the boundary value
problem to the initial value problem and the use of the 4"-order Runge Kutta-Grill algorithm for numerical integration. The parametric study

includes a thick to thin laminate by considering various aspect ratios.
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1. Introduction

In the laboratory of Japan in 1984, the first functionally
graded material (FGM) has invented. The requirement for
conflicting material properties has demanded by various
industries, and hence the use of pure metal has reduced over
time. It has replaced next by alloy then by laminated
composites, and both of these have certain drawbacks like
melting points are different in alloys and problems of
delamination occurs in the laminated composite. So, to
overcome such issues, in the thermal area, novel
functionally graded (FG) materials have used. FG material
composed of metals on one side and ceramic on the other
side. The FGM has toughened and strengthened by the
metallic composition, while the ceramic in the FGM offers
thermal barrier effects and protects the metal from corrosion
and oxidation. The composition of metal or ceramic has
graded in one or particular direction(s) of FG laminate. In
FGM, material variations generally considered to be varied
as per exponential law (called E-FGM), power law (called
P-FGM), and by both exponential and power law variation
(called S-FGM). FGM has wide applications in automotive,
aerospace, biomedical, and sports, hence many researchers
have attracted more to study various properties and its
behavior under different kinds of loadings.

Equivalent single layer (ESL) theories have often used
for analyzing the structures. Kiani and Eslami [1] studied
the buckling behavior of the FG beam with the help of the
Euler Bernoulli (EBT) beam theory under a different type of
thermal loading. With the help of first-order shear
deformation theory (FOST), Chakraborty et al. [2]
developed a new finite beam model for comparison of pure
metal behavior with FG beam under static, free vibration

and wave propagation problems. Further higher-order shear
deformation theory (HOST) has been used by Benatta et al.
[3] and presented flexural behavior under three-point
loading. Kadoli et al. [4] carried out stress and deflection
analyses for various combinations of metal-ceramic, which
has achieved by different power law exponent. HOST
requires shear correction factors, and to avoid this, a new
HOST similar to EBT has developed for dynamic analysis
by Thai and Vo [5]. Wattanasakulpong et al. [6] used third-
order shear deformation theory to study buckling and
vibration of power law varied FG beam. A comparison of all
ESL theories has carried out by Ben-Oumrane et al. [7] for
S-FGM thick beam subjected to uniformly distributed loads.
Apart from ESL theories, many investigators proposed other
methods also, like with the help of the FE model axially and
transversally loaded FG beam analysis has carried out by
Trinh et al. [8]. Similarly, Pietro et al. [9] developed a
unified approach for analysis of the FG beam in which
materials have either graded linear, parabolic, and cubic
variations.

In this paper, an attempt has made to extent semi-
analytical formulation developed by Pendhari et al. [10] for
thermal stress analysis of FG laminates. The partial
differential equation (PDE) of heat conduction has used to
obtain the exact variation of temperature field through the
thickness of the laminate. This obtained temperature has
used to analyze FG laminate by adopting a semi-analytical
approach again. For the parametric study, the simple power-
law varied temperature has also considered to find out
stresses generated in the laminate.
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Developed analytical models include the formation of
two-point BVP governed by a group of coupled first-order
ODE's (Eqn. 1) within the thickness of the element.

L p(8) = AG)Y(x)+ P, 0
X.

3

Here y(x,) is an n-dimensional vector of primary variables

whose number (n) equals the order of PDE, for heat
conduction formulation, 'n'is equal to two whereas for stress

analysis, is equal to the four. A(x3)(n ") Coefficient
matrix (a function of material properties in the thickness
direction), and p(x,) is an n-dimensional vector of non-

homogenous (loading). It has to note that loading terms
include only body loads such as inertia loads, thermal loads,
electric loads, etc. whereas surface loads have incorporated
into the formulation during solution procedure as a
boundary condition.

2. Mathematical Formulations

Consider a single layer of thickness '4,' FG beam of

length 'a' in 'X' direction with finite extent along 'X,'

direction. FG beam has supported at two opposite edges (4

=0, a) and exposed to the thermal load. This thermal load
varies along with the length 'a' in sinusoidal form.

Under such a situation, laminate is in -stress condition of
elasticity in the X - X3 plane (Fig.1). Coefficient of thermal
expansion (), Elastic modulus (£ ) and coefficient of
thermal conductivity (l) have varied only through the
thickness of laminate accordingly to a power law as,

x k
5 e
(hju

Where, E, and E, be Young's modulus of elasticity, ¢, and

E(x)| [E E] [E

b t b
a(x)|=|a, |+1| «, |-| «,
/1()C3) ﬂ’b ;Lr ﬂ’b

o, be constant of thermal expansion, A, and A, are the

coefficient of thermal conductivity at the bottom and top
surface of the beam, respectively. Further, it has considered
that the FG material has uniform properties at every point,
and the poison ratio has deemed to be constant through the
thickness of the laminate. A thermal load has assumed with
only known temperature value at the top and bottom of the

laminate surface(7' =7, at x,=0 and T =7, at x, =h)

t
, which has indicated in fig. 1. Detail of heat conduction
formulation omitted here to avoid lengthiness of paper. The
next paragraph gives the formulation for thermal stress
analysis.
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Fig. 1. FG laminate subjected to thermal loading

2.1 2D Stress Analysis Formulation by Semi-Analytical
formulation

As per the primary linear theory of elasticity, two-
dimensional ~ (2D)  strain-displacement  relationship,
equilibrium equations and constitutive relations in the
thermo-elastic environment can be written as,

8)( (xlﬁxf&):au(XI’x3)
1 ox,
e, (xl,x3)=M 3)
: ox,
Ou(x,x;) ow(x,x,)
) = +
Vs (315 %) ox, Ox,
60;1 (x,,x,) . er (x,,x,) +B =0
ox, ox, ‘
“)
aTX3x1 (x17x3) + aO-XIX3 (xl’x3) —{—Bx — 0
ox, ox, ’
and,
le (xl > x3) Cn CIZ 0 gx] (xl ’ x3) - a(x3 )T
o, (x,x)r=|C, C, 0 e, (x,,x,)—a(x,)T
T):]x3 (xl s x3) O O C33 yxpg (xl ’ XS)
(5)

Here a(x;)I" are the free thermal expansion strain
generated due to temperature variation, and to avoid further

complications in the analysis, the body forces, Bx1 , Bx3 per

unit volume in X and X directions, respectively, have

ignored.
The reduced material coefficients, Cl.j for plane stress

condition, are,

E(2) VE(2) E(z)

C11 :(1—2’ C12 = C21 =7 o\ sz =77
-0 ) (1 -0 ) (1 -0 )

The above Eqns. (3), (4) and (5) contains eight unknowns in

eight equations which have u, W, €€ 0,50, Vi
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and T, After a simple algebraic reduction of the upper sets

of equatlons, a collection of PDEs contains only four

dependent variablesu, W, o, and 7__ received as

follows, :
au(xia)%) X3r1 (xl x ) aW(,Xi x )
ax3 C33 éxl
ou(x,
owx,x) _ 1 Uz(x1’x3)_czl(a+x})
G, 1
Oox.

A C
: P +a ()T (%, x)(C, + Cy)

or,, (x,x) C,C, || Pu(x,x,)
— {—Cﬁ( ‘é”ﬂ 6x‘2 = 6)

6x3 22 1

G, 90, (x,x)

G, o
C12C21 _C“ a(x3) aT(xl’xs)
sz ox,
oo, (x,x,) __ 9%, (x%,x,)
ox. ox

3 1

With the help of boundary conditions at the supportx = 0
and x = g Fourier trigonometric series expansion, the
PDE's given in equation (6) can be converted into coupled
first-order ODE as,

MIX, J

= . [ mrxx
w(xl,x3)=;wm(x3)sm( ; ‘j 7

and from the fundamental relations of the theory of
elasticity, it can be given that,

u(x,x;)= Zum(x )cos(

z-xlx3 (xl 2 3) z Txl X3m (x ) COS

miXx
st (xl ? 3) zax m (x )Sln a : (8)

Further, applied transverse loading on the top of the
laminate and thermalvariation in the direction X; is also

express in sinusoidal form as,

T(x,x,)= > T(x,)sin ©)
m=1

Putting Eqns. (7), (8) and (9), and its differential coefficients
into Eqn. (6), ordinary differential equations (ODEs) as
mentioned in equation (10) have received,
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du, (x,) mr
Th ( a} w,(x )J{C}J T (X:)

E G R e
(C +C22 ]a(x )T(x )
7o (X:) Z(Q2C21 _C“J[m id Ju (x,)
dx, G, a
(@
_(q2c21 _C“J[mﬂja(x )T (x,)
C22
) (1))
dx, ) (10)

Eqn. (10) indicate the ruling two-point BVP in ODE's in the
domain 0<x; </ with stress components known at the

upper and downward surfaces of a beam.
3. Numerical Study

A computer program has developed to solve heat
conduction formulation as well as stress formulation. We
know the temperature at the top is 300° C where ceramic has
faced, and20° C at the bottom where metal has faced,
through thickness temperature distribution has determined
with the help of heat conduction solution. Further thermal
stress analysis has carried out for exact through thickness
distributed temperature (Exact model). A similar exercise
has carried out for assumed power law through thickness
variation of temperature (PL Model). While performing
these exercises, material properties, as mentioned in Table 2,
has used.

Different power indices have considered (k=0) for

ceramic (k =10) for metals. Based on the convergence

studies, around20 to 30 steps have used through the
thickness of laminate for numerical integration. Variations

in in-plane displacements (L_tn), transverse displacement
(Wn),in—plane normal stress (5'x), and transverse shear

stress (ZTXZ ) for different power indices and for aspect ratio

five has plotted, which has indicated through fig. 1 to fig. 4,
respectively.

Table-2. Material properties

At top,

z=h=SiC: E=427 GPa,A=65 K ',a =4.3x10° W 1K1
At Bottom

z=0= Al :E =70 GPa,A=233 K, a=23.4x10"° Wm'lK’1

Ref. Ji Ying et al. [11]
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From fig.2 and fig.3, it has observed that in-plane and
transverse displacementvariations showing nonlinear nature.
As the power indices (k)increase from 0 to 10,the
difference between the Exact Model and PL Modelresults go
on reducing. And (k =0.8)both these variations coincide

with each other. For the power index (kK =2)and higher,

this PL Model results overestimate Exact Model results.
Moreover, this observation has partially valid for transverse
displacement(fig.3).Fig.4 and Fig.5 shows variations for in-
plane normal stress and transverse shear stress, respectively.
From fig.4, it has observed that in-plane normal stress

followeda parabolic pattern,whereas the cosine and sine
curve noticed for transverse shear stress (Fig.5).

Further, it has observed that as the power indices (k)
increase from 0 to 10 difference between Exact Model and
PL. Model,two results go on reducing, and for (k =0.8)

both these variations, coincide with each other. The peak of
results of graphs for parabolic as well as sine or cosine curve
also shifted to the upper side with increasing power indices.
As volume fraction becomes more metallic as power indices
increased,the opposite distribution has noticed for both the

models as expected, and it hasindicated by (kK =10) graphs
of fig.4 and 5.
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Fig.2Variation of normalized in-plane displacement ﬁn through the thickness of power law

varied functionally graded beam under plane-stress condition subjected to thermal load.
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Fig.3Variation of normalized transverse displacement I/T/n through the thickness of power law

varied functionally graded beam under plane-stre
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Fig.4Variation of normalized in-plane normal stress 5 . through thickness of power law

varied functionally graded beam under plane-stress condition subjected to thermal load.
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Fig.5 Variation of normalized transverse shear stress Z_'Z through thickness of power law

X:

varied functionally graded beam under plane-stress condition subjected to thermal load.

4. Concluding Remarks

Semi-analytical formulations based on a two-point
boundary value problem governed by a set of coupled first-
order ordinary differential equations (ODEs) for thermal
stress analysis have discussed here. Comparison between
power law varied thermal stress and stress generated due to
actual temperature distribution, which has gained
throughheat conduction formulation for various power
indices have carried out. Effect of power indices on
displacements and stresses have documented here.Metals
are more sensitive for temperatures, as an increase in
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metallic nature

in volume fraction

increases more fluctuations in stresses.
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