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Abstract

Composite beams composed of reinforced concrete slab and steel section joined by mechanical connectors. The concrete slab provides
compressive strength, fire resistance, and floor surface, whereas the steel section provides high tensile strength. Steel-concrete composite
structures are widely used in frame buildings and bridges due to their economic and structural advantages. In the existing literature, a hybrid
analytical-numerical procedure is available for service load analysis of steel-concrete composite beams considering cracking, creep, and
shrinkage in concrete. The procedure uses an age-adjusted effective modulus method (AEMM) to model creep and shrinkage effects. The
AEMM is computationally efficient however, it compromises accuracy owing to the use of the same aging coefficient for creep and shrinkage.
Therefore, in this paper, a step-by-step method (SSM) has been proposed for modeling the creep and shrinkage effects. The method takes into
account the progressive concrete cracking with time due to creep and shrinkage. The method is computationally efficient for large composite
frame buildings compared to the finite element method since no discretization of the member, along the length and/or across the cross-section, is
needed. The method has been validated against experimental results available in the literature. It is observed that the SSM has greater accuracy

than the AEMM.
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1. Introduction

Steel-concrete composite structures are widely used in
frame buildings and bridges due to economic and structural
advantages. Composite construction has an added advantage
of rapid erection during construction. Composite beams
composed of reinforced concrete slab and steel section
joined by mechanical connectors. The typical composite
beam section is shown in Fig. 1. The concrete slab provides
compressive strength, fire resistance, and floor surface,
whereas the steel section provides high tensile strength. A
monolithic action, with shear connectors between them,
enables the concrete slab and steel section to produce a
composite beam, making it stiffer and stronger than if the
concrete slab and steel section acted alone in non-composite
fashion [1].

In sagging or positive bending, the concrete slab is most
effective where it is under compression and forms a
compressive flange of the composite beam. However, in
hogging or negative moment regions, the concrete slab is
under tension and may crack at service loads, which implies
that the slab is less beneficial since its contribution to
strength and stiffness of the composite beam disappears
when the concrete cracks [2].

Moreover, there is a progressive cracking of composite
beams due to time-dependent effects of creep and shrinkage,

which can result in internal force redistribution and an
increase in deflection of beams. In a limit state of design, the
structure must be designed to satisfy the requirements of
serviceability and strength. Design for strength is relatively
straight forward compared to serviceability design. The
strength limit state design for composite beams generally
applies to the plastification of the steel section in sagging
bending or stability consideration in hogging moment
regions near the interior supports of the structure [1]. On the
other hand, for serviceability limit state design of composite
structures, the behavior under sustained service loads is
complicated by time-dependent deformation of concrete and
increased deflection of beams due to creep and shrinkage.
Additional nonlinearity caused by the cracking of concrete
over each interior support where the applied tensile stress
exceeds the tensile strength of concrete makes further
difficulty for long term analysis of composites.

Time analysis of composite structures involves
determining strains, stresses, curvatures, and deflections at
the critical points and at the critical times during the service
life of the structure. The long-term behavior of structures,
i.e., final deformation and final internal actions after which
effects of creep and shrinkage have taken place, is of most
interest in structural design.

*Corresponding author. Tel: +91 9718993561; E-mail address: kapatel@amd.svnit.ac.in

Proceedings of the 12th Structural Engineering Convention (SEC 2022), NCDMM, MNIT Jaipur, India | 19-22 December, 2022
© 2022 The authors. Published by Alwaha Scientific Publishing Services, ASPS. This is an open access article under the CC BY license.

Published online: December 19, 2022
doi:10.38208/acp.v1.480




Patel .et.al. / ASPS Conference Proceedings 1: 105-109 (2022)

7 :

Concrete slab Steel

Reinforcement

¢ 9 0 0 2 & ¢ 0 ¢ 0+ 0

Steel section

Fig. 1. Typical composite beam section

Several methods have been proposed in the literature
for the time-dependent analysis of composite structures in a
cracked and uncracked state of concrete in composite
beams. Kwak and Seo [3] and Fragiacomo et al. [4]
developed methods for the time-dependent analysis of
continuous composite beams subjected to the ultimate load
stage. The beams are divided along the length and across the
cross-section to take into account non-linear behavior. The
time-dependent analysis of composite structures has also
been conducted using numerical procedures under service
loads. Inelastic analysis of continuous composite beams
using a coupled system of the equation has been proposed
by Dezi and Tarantino [5]. The procedure discretizes the
beam along the axis and assumes the beam to be uncracked.

Analytical models have also been developed for the
time-dependent analysis of two-span continuous composite
beams at service loads by Gilbert and Bradford [2].
Analytical expressions for the behavior of two-span
composite beams under sustained service loads have been
described. Cracking of the slab in the negative moment
regions at each interior support has been taken into account.

Further, a hybrid procedure that takes into account the
progressive cracking of concrete with time, tension
stiffening of cracked concrete, as well as creep and
shrinkage effects, has been presented by Chaudhary et al.
[6].

In the hybrid procedure [6], close form expressions for
flexibility coefficients, end displacements of beam elements,
crack lengths, and mid-span deflection of the cracked beam
element has been developed. Further, the load vector has
been obtained by using closed-form expression. Therefore,
the procedure is analytical at the elemental level and
numerical at the structural level. Due to closed-form
expressions, the hybrid procedure is efficient compared to
other methods such as FEM in terms of computational time
and effort need for large composite frames. The procedure
uses an age-adjusted effective modulus method (AEMM) to
model creep and shrinkage effects. The AEMM is
computationally efficient; however, it compromises
accuracy owing to the use of the same aging coefficient for
creep and shrinkage. Therefore, in this paper, a step-by-step
method (SSM) has been proposed for modeling the creep
and shrinkage effects.
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2. Creep of Concrete

For the time-dependent analysis of structures, it is
necessary to employ time functions of strain or stress of the
materials involved. The strain during the application of the
stress (or within seconds after that) is called instantaneous
strain. It can be expressed in the form:

£.(t,)=o(1,) 1 E,(t,) (1)
where ¢,(¢,) is the instantaneous strain, o (¢, ) is the applied
stress, and E_(z,) is the modulus of elasticity of concrete at
age ¢, , the time of application of stress.

Under sustained stress, the strain increases with time
due to the creep of concrete. The strain due to the sustained
load after some time ¢ from the application of load is the
sum of instantaneous and creep strains and is given by:

o.(t,)
E.(2,)
where ¢(¢,¢,)is a dimensionless creep coefficient, and it is a

&.(t,) = [1+6(t.1,) ] )

function of the age of concrete at the time of first loading
(t,)and at the final time (¢f) at which the strain is

calculated.
The creep coefficient ¢ represents the ratio of creep to

instantaneous strain; its value increases with the decrease of
age at the time of first loading (#,) and the increase in the

length of period of loading (¢ —t,) during which the stress is

sustained [7]. Indian code of practice IS 456 [8] specifies
that creep of concrete to be considered as proportional to
stress as long as the stress in concrete does not exceed one
third of the characteristics compressive strength of concrete.
The code also specifies values of creep coefficients in the
absence of experimental data for different age of concrete
(¢,) first loading. However, in this study, the creep

coefficient has been modeled using the creep function given
by CEB FIP MODEL CODE 90 [9].

3. Shrinkage of Concrete

Shrinkage of concrete is caused by the drying of
concrete in air. When the change in volume caused by
shrinkage is restrained, stress develops. In reinforced
concrete slab of composite frames and beams, the restraint
may be caused by reinforcing steel, supports, or due to the
difference in volume change in different parts of the
structure.

Stresses caused by the effects of creep and shrinkage
must be considered in stress analysis for composite
structures [7]. In the absence of experimental data, Indian
code IS 456 [8] specifies total shrinkage strain to be taken as
0.0003 for design purposes. In the present study, shrinkage
has been modeled using shrinkage law recommended by
CEB FIP MODEL CODE 90 [9].

4. Creep Superposition
Within the range of stresses in-service load conditions,

superposition of strains due to stress increments or
decrements and due to shrinkage can be implemented. When
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the magnitude of applied stress changes with time, the total
strain of concrete due to the applied stress and shrinkage of
concrete is given by Ghali et al. [7]:

1+ ¢(2,2,)

&)= o-c(to)—E ) +
Ao (1) (3)
1+¢(,7)
—EC = do(r)+¢&y/(t,t,)

0
where ¢, is the age of concrete when the initial stress is
applied; ¢ is the age of concrete when strain is computed; 7
is the intermediate time between ¢, and 7; o(z,) is the

initial stress applied at the initial time ¢, do{(r) is the stress
change at the time 7; E_(r) is the modulus of elasticity of
concrete at age 7; ¢(s,z,) is the coefficient of creep at time
t and loading at the age of concrete 7,; ¢, (t,,) is the free
shrinkage occurring during the time (r-¢)).

5. Step-by-Step Method (SSM)

Under sustained service load where the stress in
concrete is unlikely to exceed about half of the compressive
strength of concrete, strain due to loading in concrete is
proportional to stress, and hence the principle of
superposition can be used to estimate deformation caused by
a time-varying stress history [10]. Thus, creep strain
produced by a stress increment applied at the time 7 is
assumed to be unaffected by pervious stress increment.

According to the principle of superposition, the total
strain in concrete at final time ¢ from the time of load

application #, is the sum of elastic instantaneous strain,

creep strain, and shrinkage strain, which given by:

£(t) = £,(0) + £,(1) + £,,(1) @
Upon replacing for each strain components for

continuously varying stress history (Fig. 2), the above
equation can be written:

O-O
&t) = E (t0)|:1+¢(t,70)]+
‘ (%)
J‘§0(5) RS, ) I
5t | E.(7) sh
O-r)
Ac(t)
Ao(t,)
stress G( l)
X\ZEAG(Q)
t, !
, I, T . 4 T
W time intervals 'T\{

Fig. 2. Time-varying stress history
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where o, is loading at the initial time ¢ ; E (t,) is the
modulus of elasticity at the time ¢ ; ¢(z,z)) is creep
coefficient; oo (&) is stress increment for integration; oz is
the time of integration; ¢ (¢)is the shrinkage strain at the

time of interest ¢.

It is observed that Eq. (5) is a superposition equation for
a continuously varying stress history shown in Fig. 2. But
using the numerical solution for the continuous stress, Eq.
(5) can be written as using summation:

s =2+ Y RIE %y o

- Ec (to) i Ec (Ti) Ec (Za)
(6)
Ao(z;) Ht,7;)
+ ) — e, (t
Z Ec (Ti) sh( )
In the step-by-step (SSM), a numerical solution

technique is employed using the incremental form of
superposition (Eq. 6). Time is divided into a number of
intervals. The greater the number of intervals, the more
accurate will be the final prediction of deflection.

The time intervals should be of increasing duration and
should be selected so that a similar fraction of the final creep
coefficient occurs in each of the time intervals. In a
continuously varying stress shown in Fig. 2, the stress
increment that occurs in /" interval Ac(z;) is assumed to be

applied at the end of the interval, i.e., on time z;. The

increments of instantaneous and creep strain caused by the
change in stress Ao (t;)is computed at the end of subsequent

time intervals using appropriate elastic modulus and creep
coefficient E,.(z;) and ¢(¢,7;) respectively). The total strain

at the end of each time interval is then obtained by
superposing the strain increments caused by stress changes
in the previous time intervals and due to shrinkage.

Again consider a concrete member subjected to uniaxial
stress as shown in Fig. 3 and assume that the magnitude of
stress varies with time. At the time, #, an initial stress value
o.(ty) is introduced and subsequently increased gradually
or stepwise during the time ¢, to ¢. When the variation of

stress with time is known, a step-by-step (SSM) can be used
to find the strain at any time 7 between time ¢, to ¢.

(86);
(a0), \|,
(bo), V =TT

(20)

2
stress J \l’

(5)

| I 1
12 3 k ] 1
to time t
Fig. 3. Step-by-step Method (SSM): division of time and
stress for time-dependent analysis
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The period of interest for time analysis of structure
(t—t,) is divided into a number of intervals, and the stresses

are introduced in increment at the end of intervals. For
example, the stress (Ao), shown in Fig. 3 is introduced at the

end of j interval. For a sudden increase in stress, consider
an increment introduced at an interval of zero length [ (Ao),
in Fig. 3]. The strain at the end of the i" interval can be
calculated by using Eq. (3), which can also be written as in
the form of Eq. (7) below for a continuously varying stress
history [7].

+ P, )
g(tl+) Z j W + Esh (ti+7to) (7)
where g(z,,) is the total strain at the end of i time interval;

t, is the end of time interval; ¢, is the initial time of loading,
and the remaining terms are defined in Eq. (5).

The total strain at the end of /" interval can be
computed by using the following equation:

&t )=(Ao,), %ﬁj)ﬁz)
i—1 (8)
+ Z (A J g((zw) ) ‘e, (ti+ ’ to)

J=1

where, o and & are the stress and strain respectively with
subscripts ¢ referring to concrete; ¢ is the time with
subscripts i (j) indicating the end of /™ (/) interval; 7, is the
age at the beginning of the period for which the analysis is
considered; £,,(t,,,1)) is the shrinkage that would occur if it

were free during the period (z,.%); (Ac,); is change in
stress at the end of /™ interval.

The change of strain in the i interval can be computed
by taking the difference between the strain values calculated
by Eq. (8) at the ends of the (i-1)™ and i™ intervals.

1+ 6(t,1,)
Ag.): =(A
(As,); = (Ao, )——Hi E<,-)
o ©)
Z [¢(r,+,z) Btit)) [+(Azy,),

j=
6. Time-dependent analysis using SSM

As mentioned earlier, the hybrid procedure [6] takes
into account the progressive cracking of concrete and time-
dependent effects of creep and shrinkage in the composite
beam of composite frames and beams under service loads.
The cracked span length of the beam element has been
modeled as an uncracked zone in the middle and cracked
zone, in the end, supports as it is indicated in Fig. 4.

SSM, as discussed in section 5, has been replaced
with AEMM in the time-dependent analysis of the hybrid
procedure. The procedure is analytical at the elemental level
since the wvarious quantities of beam element of the
composite frame and beam, such as closed-form expressions
for flexibility coefficients, end displacements, crack lengths,
and mid-span deflection of the beam have been used.

A concrete slab before cracking B
(7777 77 77 7 77 77 7 7 I N [T
1 < > steel section 4
3 6
2 5

(a) Composite beam element before cracking

" cracked uncracked cracked B
V7 7777 7 7 1
1 < S 4
S A XA9|‘— L-(Xg+Xp) ﬂe Xp d
2 5

(b) Composite beam element model after cracking
Fig. 4. Cracked span length beam element

Analysis of continuous composite beams under
service loads considering the effect of creep and shrinkage
phenomena can be done in two parts: instantaneous and
time-dependent analysis. Instantaneous analysis needs non-
linear analysis, e.g., iteration analysis in which the
nonlinearity is introduced by the cracking of concrete at the
interior supports of indeterminate structures such as
continuous composite beams. Whereas time-dependent
analysis of composite structures at service load can be
computed using linear elastic analysis for each time interval
in which the total time interval is divided into a number of
intervals for analysis.

7. Validation

The proposed SSM method for time-dependent analysis
of composite beams has been validated with experimental
laboratory measurements taken on a full scale continuous
composite beam tested over a period of 340 days by Gilbert
and Bradford [2].

In a laboratory test, a continuous composite beam was
subjected to sustained service load over a period of 340
days. The beam was continuous over 5.8 m. The cross-
section and elevation are shown in Fig. 5. The relevant
properties and dimensions are: depth of concrete slab, D, =
70 mm; width of the slab, » = 1000 mm; depth of steel
section, D, = 203 mm; area of steel section, 4, = 3230 mmz;
moment of inertia of steel section /,, = 23.6 x 10° mm6; area

w=1.92KkIN/m
T T

A im? 52 203
T -
A
ko0 115
(b)

Fig. 5. (a) Elevation and (b) cross-section of two-span
continuous
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Table-1. Comparison of mid-span deflections

(a)
Age of loading Deflection (mm) Difference
(days) Experiments | AEMM (%)
3 4.08 18.4
7 5.00 4.09 18.2
10 4.11 17.8
(b)
Age of loading Deflection (mm) Difference
(days) Experiments SSM (%)
3 4.84 3.2
7 5.00 5.11 2.2
10 5.24 -4.8

of steel reinforcement for the slab, 4, = 113 mm” and depth
of steel reinforcement from top of the slab, d;, = 15 mm. The
properties of concrete at 28 days are: E; = 22000 MPa; ¢ =

1.68; & = 0.00052 and tensile strength f, = 2.7 MPa.

The beam was subjected only to its self-weight, i.e.,
1.92 kN/m. Time-dependent analysis has been carried out
using SSM for modeling of creep and shrinkage effects.
Since the authors of the experimental work [2] doesn’t
specify the age of concrete at the time of first loading,
analysis has been carried out for 3, 7, and 10 days of initial
loading after casting of the concrete slab. Mid-span
deflections from the experiments [2], AEMM [6], and the
proposed SSM are compared in Table 1 along with
percentage differences. It is seen from Table 1 that the
results of the time-dependent analysis using SSM having
close agreement than those from AEMM while comparing
with the experimental results.

8. Conclusions

It can be concluded that SSM for time-dependent
analysis has shown a reasonable accuracy in the
computation of deflections of composite beams under
sustained service loads. The SSM for modeling of creep and
shrinkage has shown close agreement with the experimental
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test results available in the literature. Despite the other
procedures such as the finite element method (FEM), the
proposed procedure is efficient in terms of the
computational effort and time needed for computation of
time-dependent responses of large composite structures such
as the tall composite frame of buildings since no
discretization of the member, along the length and/or across
the cross-section, is needed. This is due to the use of close
form expressions for the structure-property and responses.
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