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Abstract 

Composite beams composed of reinforced concrete slab and steel section joined by mechanical connectors. The concrete slab provides 
compressive strength, fire resistance, and floor surface, whereas the steel section provides high tensile strength. Steel-concrete composite 
structures are widely used in frame buildings and bridges due to their economic and structural advantages. In the existing literature, a hybrid 
analytical-numerical procedure is available for service load analysis of steel-concrete composite beams considering cracking, creep, and 
shrinkage in concrete. The procedure uses an age-adjusted effective modulus method (AEMM) to model creep and shrinkage effects. The 
AEMM is computationally efficient however, it compromises accuracy owing to the use of the same aging coefficient for creep and shrinkage. 
Therefore, in this paper, a step-by-step method (SSM) has been proposed for modeling the creep and shrinkage effects. The method takes into 
account the progressive concrete cracking with time due to creep and shrinkage. The method is computationally efficient for large composite 
frame buildings compared to the finite element method since no discretization of the member, along the length and/or across the cross-section, is 
needed. The method has been validated against experimental results available in the literature. It is observed that the SSM has greater accuracy 
than the AEMM. 
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1. Introduction 

Steel-concrete composite structures are widely used in 
frame buildings and bridges due to economic and structural 
advantages. Composite construction has an added advantage 
of rapid erection during construction. Composite beams 
composed of reinforced concrete slab and steel section 
joined by mechanical connectors. The typical composite 
beam section is shown in Fig. 1. The concrete slab provides 
compressive strength, fire resistance, and floor surface, 
whereas the steel section provides high tensile strength. A 
monolithic action, with shear connectors between them, 
enables the concrete slab and steel section to produce a 
composite beam, making it stiffer and stronger than if the 
concrete slab and steel section acted alone in non-composite 
fashion [1]. 

In sagging or positive bending, the concrete slab is most 
effective where it is under compression and forms a 
compressive flange of the composite beam. However, in 
hogging or negative moment regions, the concrete slab is 
under tension and may crack at service loads, which implies 
that the slab is less beneficial since its contribution to 
strength and stiffness of the composite beam disappears 
when the concrete cracks [2].  

Moreover, there is a progressive cracking of composite 
beams due to time-dependent effects of creep and shrinkage, 

which can result in internal force redistribution and an 
increase in deflection of beams. In a limit state of design, the 
structure must be designed to satisfy the requirements of 
serviceability and strength. Design for strength is relatively 
straight forward compared to serviceability design. The 
strength limit state design for composite beams generally 
applies to the plastification of the steel section in sagging 
bending or stability consideration in hogging moment 
regions near the interior supports of the structure [1]. On the 
other hand, for serviceability limit state design of composite 
structures, the behavior under sustained service loads is 
complicated by time-dependent deformation of concrete and 
increased deflection of beams due to creep and shrinkage. 
Additional nonlinearity caused by the cracking of concrete 
over each interior support where the applied tensile stress 
exceeds the tensile strength of concrete makes further 
difficulty for long term analysis of composites. 

Time analysis of composite structures involves 
determining strains, stresses, curvatures, and deflections at 
the critical points and at the critical times during the service 
life of the structure. The long-term behavior of structures, 
i.e., final deformation and final internal actions after which 
effects of creep and shrinkage have taken place, is of most 
interest in structural design. 
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Fig. 1. Typical composite beam section 
 
Several methods have been proposed in the literature 

for the time-dependent analysis of composite structures in a 
cracked and uncracked state of concrete in composite 
beams. Kwak and Seo [3] and Fragiacomo et al. [4] 
developed methods for the time-dependent analysis of 
continuous composite beams subjected to the ultimate load 
stage. The beams are divided along the length and across the 
cross-section to take into account non-linear behavior. The 
time-dependent analysis of composite structures has also 
been conducted using numerical procedures under service 
loads. Inelastic analysis of continuous composite beams 
using a coupled system of the equation has been proposed 
by Dezi and Tarantino [5]. The procedure discretizes the 
beam along the axis and assumes the beam to be uncracked. 

Analytical models have also been developed for the 
time-dependent analysis of two-span continuous composite 
beams at service loads by Gilbert and Bradford [2]. 
Analytical expressions for the behavior of two-span 
composite beams under sustained service loads have been 
described. Cracking of the slab in the negative moment 
regions at each interior support has been taken into account.  

Further, a hybrid procedure that takes into account the 
progressive cracking of concrete with time, tension 
stiffening of cracked concrete, as well as creep and 
shrinkage effects, has been presented by Chaudhary et al. 
[6].  

In the hybrid procedure [6], close form expressions for 
flexibility coefficients, end displacements of beam elements, 
crack lengths, and mid-span deflection of the cracked beam 
element has been developed. Further, the load vector has 
been obtained by using closed-form expression. Therefore, 
the procedure is analytical at the elemental level and 
numerical at the structural level. Due to closed-form 
expressions, the hybrid procedure is efficient compared to 
other methods such as FEM in terms of computational time 
and effort need for large composite frames. The procedure 
uses an age-adjusted effective modulus method (AEMM) to 
model creep and shrinkage effects. The AEMM is 
computationally efficient; however, it compromises 
accuracy owing to the use of the same aging coefficient for 
creep and shrinkage. Therefore, in this paper, a step-by-step 
method (SSM) has been proposed for modeling the creep 
and shrinkage effects. 

 
 

2. Creep of Concrete 

For the time-dependent analysis of structures, it is 
necessary to employ time functions of strain or stress of the 
materials involved. The strain during the application of the 
stress (or within seconds after that) is called instantaneous 
strain. It can be expressed in the form:           

( ) ( ) / ( )e o o o ot t E t                                                          (1) 

where ( )e ot
 
is the instantaneous strain, ( )ot is the applied 

stress, and ( )o oE t
 
is the modulus of elasticity of concrete at 

age ot , the time of application of stress. 

Under sustained stress, the strain increases with time 
due to the creep of concrete. The strain due to the sustained 
load after some time t from the application of load is the 
sum of instantaneous and creep strains and is given by: 

( )
( ) 1 ( , )

( )
c o

c o o
c o

t
t t t

E t


                                                     (2) 

where ( , )ot t is a dimensionless creep coefficient, and it is a 

function of the age of concrete at the time of first loading 
( )ot and at the final time ( )t  at which the strain is 

calculated.  
The creep coefficient   represents the ratio of creep to 

instantaneous strain; its value increases with the decrease of 
age at the time of first loading ( )ot  and the increase in the 

length of period of loading ( )ot t during which the stress is 

sustained [7]. Indian code of practice IS 456 [8] specifies 
that creep of concrete to be considered as proportional to 
stress as long as the stress in concrete does not exceed one 
third of the characteristics compressive strength of concrete. 
The code also specifies values of creep coefficients in the 
absence of experimental data for different age of concrete 
( )ot first loading. However, in this study, the creep 

coefficient has been modeled using the creep function given 
by CEB FIP MODEL CODE 90 [9]. 

3. Shrinkage of Concrete 

Shrinkage of concrete is caused by the drying of 
concrete in air. When the change in volume caused by 
shrinkage is restrained, stress develops. In reinforced 
concrete slab of composite frames and beams, the restraint 
may be caused by reinforcing steel, supports, or due to the 
difference in volume change in different parts of the 
structure. 

Stresses caused by the effects of creep and shrinkage 
must be considered in stress analysis for composite 
structures [7]. In the absence of experimental data, Indian 
code IS 456 [8] specifies total shrinkage strain to be taken as 
0.0003 for design purposes. In the present study, shrinkage 
has been modeled using shrinkage law recommended by 
CEB FIP MODEL CODE 90 [9]. 

4. Creep Superposition 

Within the range of stresses in-service load conditions, 
superposition of strains due to stress increments or 
decrements and due to shrinkage can be implemented. When 
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the magnitude of applied stress changes with time, the total 
strain of concrete due to the applied stress and shrinkage of 
concrete is given by Ghali et al. [7]: 
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where ot  is the age of concrete when the initial stress is 

applied; t  is the age of concrete when strain is computed; 
 is the intermediate time between ot  and t ; )( ot  is the 

initial stress applied at the initial time ot  )(d  is the stress 

change at the time  ; )(cE is the modulus of elasticity of 

concrete at age ;
 ( , )ot t  is the coefficient of creep at time 

t  and loading at the age of concrete ot ; ( , )sh ot t  is the free 

shrinkage occurring during the time ( )ot t .   

5. Step-by-Step Method (SSM) 

Under sustained service load where the stress in 
concrete is unlikely to exceed about half of the compressive 
strength of concrete, strain due to loading in concrete is 
proportional to stress, and hence the principle of 
superposition can be used to estimate deformation caused by 
a time-varying stress history [10]. Thus, creep strain 
produced by a stress increment applied at the time   is 
assumed to be unaffected by pervious stress increment. 

According to the principle of superposition, the total 
strain in concrete at final time t from the time of load 

application 0t  is the sum of elastic instantaneous strain, 

creep strain, and shrinkage strain, which given by: 

)()()()( tttt shce                                            (4) 

Upon replacing for each strain components for 
continuously varying stress history (Fig. 2), the above 
equation can be written: 

 
0

( ) 1 ( , )
( )

( ) 1 ( , )
( )

( )

o
o

c o

t

sh
c

t t
E t

t
d t

E


  

     
 

    

 
 

 
                             (5)  

 

Fig. 2. Time-varying stress history  

where 
0 is loading at the initial time ot ; )( oc tE  is the 

modulus of elasticity at the time ot ; ),( ott  is creep 

coefficient; )(  is stress increment for integration;   is 

the time of integration; )(tsh is the shrinkage strain at the 

time of interest t.  
It is observed that Eq. (5) is a superposition equation for 

a continuously varying stress history shown in Fig. 2. But 
using the numerical solution for the continuous stress, Eq. 
(5) can be written as using summation: 
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In the step-by-step (SSM), a numerical solution 
technique is employed using the incremental form of 
superposition (Eq. 6). Time is divided into a number of 
intervals. The greater the number of intervals, the more 
accurate will be the final prediction of deflection. 

The time intervals should be of increasing duration and 
should be selected so that a similar fraction of the final creep 
coefficient occurs in each of the time intervals. In a 
continuously varying stress shown in Fig. 2, the stress 
increment that occurs in ith interval ( )i   is assumed to be 

applied at the end of the interval, i.e., on time i . The 

increments of instantaneous and creep strain caused by the 
change in stress ( )it is computed at the end of subsequent 

time intervals using appropriate elastic modulus and creep 
coefficient ( )c iE   and ( , )it   respectively). The total strain 

at the end of each time interval is then obtained by 
superposing the strain increments caused by stress changes 
in the previous time intervals and due to shrinkage. 

Again consider a concrete member subjected to uniaxial 
stress as shown in Fig. 3 and assume that the magnitude of 
stress varies with time. At the time, 0t  an initial stress value 

0( )c t
 
is introduced and subsequently increased gradually 

or stepwise during the time 0t  to t . When the variation of 

stress with time is known, a step-by-step (SSM) can be used 
to find the strain at any time   between time  0t  to t . 

 
 

Fig. 3. Step-by-step Method (SSM): division of time and 
stress for time-dependent analysis 
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The period of interest for time analysis of structure 

0( )t t  is divided into a number of intervals, and the stresses 

are introduced in increment at the end of intervals. For 
example, the stress 

j)(   shown in Fig. 3 is introduced at the 

end of jth interval. For a sudden increase in stress, consider 
an increment introduced at an interval of zero length [ ( )k

 
in Fig. 3]. The strain at the end of the ith interval can be 
calculated by using Eq. (3), which can also be written as in 
the form of Eq. (7) below for a continuously varying stress 
history [7]. 
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where )( it  is the total strain at the end of ith time interval; 

t+ is the end of time interval; t0 is the initial time of loading, 
and the remaining terms are defined in Eq. (5).  

The total strain at the end of ith interval can be 
computed by using the following equation: 
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where,   and   are the stress and strain respectively with 
subscripts c referring to concrete; t is the time with 
subscripts i (j) indicating the end of ith (jth) interval; to is the 
age at the beginning of the period for which the analysis is 
considered; ),( 0tt ish   is the shrinkage that would occur if it 

were free during the period 0( , )it t ; ( )c j  is change in 

stress at the end of jth interval. 

The change of strain in the ith interval can be computed 
by taking the difference between the strain values calculated 
by Eq. (8) at the ends of the (i-1)th and ith intervals.
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         (9) 

6. Time-dependent analysis using SSM 

As mentioned earlier, the hybrid procedure [6] takes 
into account the progressive cracking of concrete and time-
dependent effects of creep and shrinkage in the composite 
beam of composite frames and beams under service loads. 
The cracked span length of the beam element has been 
modeled as an uncracked zone in the middle and cracked 
zone, in the end, supports as it is indicated in Fig. 4. 

SSM, as discussed in section 5, has been replaced 
with AEMM in the time-dependent analysis of the hybrid 
procedure. The procedure is analytical at the elemental level 
since the various quantities of beam element of the 
composite frame and beam, such as closed-form expressions 
for flexibility coefficients, end displacements, crack lengths, 
and mid-span deflection of the beam have been used.  

(a) Composite beam element before cracking 
 

 
(b) Composite beam element model after cracking 

 
Fig. 4. Cracked span length beam element 

 
Analysis of continuous composite beams under 

service loads considering the effect of creep and shrinkage 
phenomena can be done in two parts: instantaneous and 
time-dependent analysis. Instantaneous analysis needs non-
linear analysis, e.g., iteration analysis in which the 
nonlinearity is introduced by the cracking of concrete at the 
interior supports of indeterminate structures such as 
continuous composite beams. Whereas time-dependent 
analysis of composite structures at service load can be 
computed using linear elastic analysis for each time interval 
in which the total time interval is divided into a number of 
intervals for analysis. 

7. Validation 

The proposed SSM method for time-dependent analysis 
of composite beams has been validated with experimental 
laboratory measurements taken on a full scale continuous 
composite beam tested over a period of 340 days by Gilbert 
and Bradford [2]. 

In a laboratory test, a continuous composite beam was 
subjected to sustained service load over a period of 340 
days. The beam was continuous over 5.8 m. The cross-
section and elevation are shown in Fig. 5. The relevant 
properties and dimensions are: depth of concrete slab, Dc = 
70 mm; width of the slab, b = 1000 mm; depth of steel 
section, Ds = 203 mm; area of steel section, Ass = 3230 mm2; 
moment of inertia of steel section Iss = 23.6 106 mm6; area  

  
(a) 

 
(b) 

Fig. 5. (a) Elevation and (b) cross-section of two-span 
continuous 
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Table-1. Comparison of mid-span deflections 
(a) 

Age of loading 
(days) 

Deflection (mm) Difference 
(%) Experiments AEMM 

3 
5.00 

4.08 18.4 
7 4.09 18.2 
10 4.11 17.8 

 
(b) 

Age of loading 
(days) 

Deflection (mm) Difference  
(%) Experiments SSM 

3 
5.00 

4.84 3.2 
7 5.11 -2.2 
10 5.24 -4.8 

 
 
of steel reinforcement for the slab, Asr = 113 mm2 and depth 
of steel reinforcement from top of the slab, dsr = 15 mm. The 
properties of concrete at 28 days are: Es = 22000 MPa;    

1.68; sh   0.00052 and tensile strength tf   2.7 MPa. 

 
The beam was subjected only to its self-weight, i.e., 

1.92 kN/m. Time-dependent analysis has been carried out 
using SSM for modeling of creep and shrinkage effects. 
Since the authors of the experimental work [2] doesn’t 
specify the age of concrete at the time of first loading, 
analysis has been carried out for 3, 7, and 10 days of initial 
loading after casting of the concrete slab. Mid-span 
deflections from the experiments [2], AEMM [6], and the 
proposed SSM are compared in Table 1 along with 
percentage differences. It is seen from Table 1 that the 
results of the time-dependent analysis using SSM having 
close agreement than those from AEMM while comparing 
with the experimental results. 

8. Conclusions 

It can be concluded that SSM for time-dependent 
analysis has shown a reasonable accuracy in the 
computation of deflections of composite beams under 
sustained service loads. The SSM for modeling of creep and 
shrinkage has shown close agreement with the experimental 

test results available in the literature. Despite the other 
procedures such as the finite element method (FEM), the 
proposed procedure is efficient in terms of the 
computational effort and time needed for computation of 
time-dependent responses of large composite structures such 
as the tall composite frame of buildings since no 
discretization of the member, along the length and/or across 
the cross-section, is needed. This is due to the use of close 
form expressions for the structure-property and responses. 
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