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Abstract 

In this paper, numerical approach for free vibration response of functionally graded material (FGM) circular and annular plate is examined using 
differential quadrature method (DQM), and first-order shear deformation theory. The effective material properties through the thickness of the 
plate are obtained via power-law distribution. The governing partial differential equations (GDEs) are obtained using Hamilton’s principle. The 
five GDEs are discretized via DQM. Several comparison studies were carried out by those published in the literature. The free vibration analysis 
is investigated to reveal the effects of outer radius to thickness ratio, grading index, radii ratio and boundary conditions. 
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1. Introduction 
 
The pursuit of lightweight yet more robust materials has 
consistently been a matter of prime concern to engineers 
worldwide. Advanced composite materials were produced 
due to the increasing necessity of mixing two or more 
conventional materials by gradually varying the constituent 
material's volume fraction. The idea of such a class of 
material, termed as FGM was proposed by Bever and 
Duwez, (Bever and Duwez, 1972). FGMs were first 
exploited by Japanese scientists Koizumi and Niino, 
(Koizumi and Niino, 1995) (Koizumi, 1997). As the name 
suggests, functionally graded materials are characterized by 
its inhomogeneity, such that the gradation of properties of 
two materials (metal and ceramic usually) occurs according 
to a predefined function in space from one surface to the 
other. The metal-rich component is responsible for the 
toughness of the resultant composite, hence maintaining the 
structural integrity, and the ceramic rich component 
attributes to high refractoriness. The continuity of material 
properties in FGM has significantly mitigated delamination 
and crackling at the interface problems incurred in 
conventional laminated composites. FGM structures are 
extensively utilized as basic structural components in the 
automotive industry (race car brakes, engine pistons), 
aeronautical and aerospace industry (rocket nozzles, thermal 
barrier coatings) electronic appliances (piezoelectric 
devices, sensors, Integrated circuits), biomaterial electronics 
and in many structural engineering applications so it is 

compulsory to investigate their dynamic characteristics. 
(Alipour and Shariyat, 2014) (Golmakani and Kadkhodayan, 
2011) (Jabbari et al., 2014) (Jodaei, Jalal and Yas, 2012). 
 
It is already known that challenges appear while adopting 
analytical methods in complicated geometries with local 
elastic supports, patch loading, porosity, mixed boundary 
conditions, and several other interferences. According to the 
survey of literature, it is found that many researchers used 
numerical solution method to analyse free vibration of the 
FG plates. Efraim and Eisenberger (2007) studied the free 
vibration behaviour of variable thickness of thick FGM 
circular plates via the Exact Element Method (EEM). For 
thin circular FGM plates of variable thickness, Nikkhah-
Bahrami and Shamekhi (2008) performed free vibration 
analysis via the finite element method (FEM). Wirowski 
(2009) performed free vibration response of thin FGM 
annular plates via finite difference method (FDM). M and 
M.m (2010) developed a semi-analytical solution for the 
free vibration and modal stress analysis of FG circular plates 
based on the differential transformation method (DTM). Lal 
and Ahlawat (2015) presented analytical/numerical results 
for the axisymmetric vibration of FG circular plates 
subjected to uniform in-plane load using classical plate 
theory (CPT) and GDEs of the motion solved via a semi-
analytical approach. Nie and Zhong (2008) examined the 
free and forced vibration of FGM annular sectorial plates via 
a new semi-analytical SSM-DQM approach. In SSM-DQM, 
state space method (SSM) used to obtain analytical solution 
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along the gradation direction and 1-D DQM implemented to 
approximate solution along the radial direction. 
Tornabene (2009) studied the vibration behaviour of 
moderately thick FG annular plates using FSDT, assuming 
power-law distribution of material properties and the 
discretization of the system equations is done by means of 
the Generalized Differential Quadrature (GDQ) method. 
Mirtalaie and Hajabasi (2011) used DQM to study the free 
vibration of FG thin annular sector plates. Yas and 
Tahouneh, (2012) examined free vibration of elastically 
supported FGM annular plates via DQM method. Vibration 
analysis of FG circular plates of variable thickness 
investigated by Lal and Saini, (2020b) subjected to non-
linear temperature distribution using DQM. Alipour et al. 
(2010) investigated free vibration of two-directional FGM 
circular plates resting on elastic foundations and subjected 
to various boundary conditions. Tajeddini et al. (2011) 
studied three-dimensional free vibration behaviour of FGM 
circular plates resting on Pasternak foundation using exact 
elasticity theory and polynomial-Ritz method is used to 
solve the eigenvalue problem. (Żur, 2018) analysed the 
behaviour of free vibration of elastically supported FG 
circular plates based on classical plate theory and to solve 
the boundary value problem quasi-Green's function was 
employed. (Lal and Saini, 2020a) studied axisymmetric free 
vibration of FGM circular plates subjected to a non-linear 
temperature distribution along the thickness direction via 
CPT. Molla-Alipour et al. (2020) presented a unified 
formulation for the free vibration analysis of bidirectional 
FG annular plates on elastic foundation and the material 
properties are assumed to vary in both radial and transverse 
direction by unified formulation. Zhong et al. (2020) 
investigated the free vibration of multi-directional FG 
circular plates with variable thickness using isogeometric 
analysis (IGA). 
 
Kumar et al.(2019) investigate buckling and vibration 
response of elastically supported FGM plate under porous 
medium. Roshanbakhsh et al. (2020) presented an exact 3-D 
solution for free vibration of FG circular plates based on 
displacement potential functions with surface boundary 
conditions consisting of a transversely isotropic linearly 
elastic material. Material properties vary in the thickness 
direction according to exponential law and power law. 
Eshraghi and Dag, (2020) analysed forced vibration of FG 
circular plates based on new domain-boundary element 
formulation. The resulting set of ordinary differential 
equations are solved using the Houbolt method. Ahlawat 
and Lal, (2020) presented the natural frequencies and mode 
shapes of FG bi-directional circular plates of variable 
thickness subjected to uniform in-plane peripheral loading 
and Winkler foundation based on first order shear 
deformation theory. 
 
Torabi et al. (2013) investigated the free vibration response 
of a non-uniform cantilever Timoshenko beam using a 
differential quadrature element method (DQEM). Three-
dimensional exact solution provided by Dehghany and 
Farajpour (2014) for natural frequencies behaviour of 
simply supported rectangular plate resting on elastic 
foundation. Jandaghian et al. (2014) provided exact 

analytical solution for vibration characteristc of simply 
supported FG circular plate. Vimal et al. (2014) investigated 
natural frequencies of FG skew plate using FSDT based on 
FEM. The free vibration responses of laminated composite 
plates with cutouts are investigated by Bhardwaj et al. 
(2015) using FEM. Khare and Mittal (2015) analysed free 
vibration characteristics of the circular and annular plates 
using FEM.  Dehghan et al., (2016) combined finite element 
and differential quadrature method for 3-D buckling and 
free vibration analysis of rectangular thick plates partially 
supported by an elastic foundation. DQM employed by 
Gupta et al. (2016) for free vibration analysis of 
inhomogeneous rectangular plate resting on elastic 
foundation. Torabi and Afshar (2017) presented numerical 
solution for vibration analysis of cantilevered non-uniform 
trapezoidal thick plates based on the first shear deformation 
theory using DQM. The static and dynamic analysis of thin 
and thick isotropic plates using three dimensional finite 
element based on the strain approach presented by Lazhar et 
al. (2021). 

In this paper, free vibration response of functionally graded 
material circular and annular plate is examined using 
differential quadrature method (DQM), and first-order shear 
deformation theory. The effective material properties 
through the thickness of the plate are obtained via power-
law distribution. The governing partial differential equations 
(GDEs) are obtained using Hamilton’s principle. The five 
GDEs are discretized via DQM. Several comparison studies 
were carried out by those published in the literature. The 
free vibration analysis is investigated to reveal the effects of 
outer radius to thickness ratio, grading index, radii ratio and 
boundary conditions. 

The current paper investigates the free vibration of FG-
plates circular and annular plate using FSDT, considering 
clamped and simply supported boundary conditions. The 
governing equations are discretized using the differential 
quadrature method, and natural frequencies are obtained for 
various power-index and boundary conditions. The 
convergence and comparison study of the present method 
are examined through the various examples present in the 
literatures. The effect of various grading index, radii ratio 
and radius to thickness ratio on free vibration of FGM 
circular and annular plate are presented. 

2. Mathematical Formulation 

Consider an FGM circular/annular plate of outer 
radius “Ro”, inner radius “Ri”, and thickness “h” with 
varying properties in the thickness direction which is shown 
in Fig. 1. The coordinate axis is taken on the middle plane of 
the plate with z showing the variable across the plate cross 
section. The effective materials properties of the FGM plate 
are obtained via Voigt model. 
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Fig. 1. The geometry of the annular FGM plate  
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Where, the subscripts c and m refer to ceramics and metals 
respectively and n is the grading index and P is the material 
property which includes (young's modulus E, Poisson's ratio 
μ, and mass density ρ). 
The displacements field in space domain is based on FSDT 
of a point in the circular plate are defined as 
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Where, u, v and w, represent the unknown displacements of 
the plate middle surface in the r, θ and z direction, 

respectively, r  and  , represent the rotations of rz and θz 

planes. Besides, t is the time variable. The strains of FGM 
circular plate can be written as: 
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Where 0
r  and 0

   are the normal strains;  0
r  denote the 

shear strains; rz  and z  represent the transverse shear 

strains; 0
r , 0

  and 0
r   express the curvature changes. 

The stress-strain relation can be expressed as. 
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The governing differential equations of the plate are 
obtained as: 
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The forces and moments of a FGM circular plate can be 
obtained as below 
 

 

 

(11) 

 

 

(12) 

  

 

 (13) 

Where, ( 5 / 6)k   is the shear correction coefficient. The 

symbol Aij, Bij and Dij are the extensional, coupling and 
bending stiffness of the plate respectively.   

  /2 /2ij ij h hA Q z z  , (i , j = 1, 2, 6)                              (14) 

  /2 /2ij ij h hA k Q z z  , (i , j = 4, 5)                                           (15) 

  2 2
/2 /2

1

2ij ij h hB Q z z   , (i , j = 1, 2, 6) (16) 

  3 3
/2 /2

1

3ij ij h hD Q z z   , (i , j = 1, 2, 6) (17) 

 
The mass inertias of the plate Ii (i = 0, 1, 2) are defined as 
follows 

Ri
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3. Method of Solution 

In this work, the governing equations are spatially 
discretized using DQM. The pth spatial derivatives of a 
generic function ( )r  at the (i)th point in a one-dimensional 
region is approximated by (with M divisions in that r-
direction), as Khare and Mittal (2019): 
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 The weighting coefficient of the value of ϕ at the kth 

point for the pth order derivative derived with respect to r 

at the ith point is  p
rikQ . 

 The value of ϕ at the ith point in the one-dimensional 
domain is denoted by k . 
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Boundary condition for annular FGM plate can be simulated 
by controlling translational and rotational degrees of 
freedom. 
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The non-dimensional elastic foundation coefficients are 
defined as: 
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Thus, considering an annular plate with both edges clamped 
(CC), 

, [1 12,1 12,1 12,1 12,1 12;1 12,1 12,1 12,1 12,1 12] ,T
i jk e e e e e e e e e e  

And for an annular plate with both edges simply supported 
(SS), 

, [1 12,1 12,1 12,0,1 12;1 12,1 12,1 12,0,1 12]T
i jk e e e e e e e e  

4. Result and Discussions 

To establish the accuracy and effectiveness of the employed 
methodology, a convergence and comparison study is 
performed. Two types of FGM are considered in the present 
analysis and depicted in Table 1. The fundamental 
frequency of a simply supported and clamp supported 
isotropic circular plate is tabulated in Table 2 and Table 3 
respectively. The fundamental frequency parameter 

/h E    is considered with Ro/h =10. It is evident 
from the Table 2 and Table 3 that the frequency of all 6 
modes is converging at (18x16) and are found to be in good 
agreement with the solutions by Mohammadi et al. (2013), 
Nguyen et al. (2015) and Thai et al. (2020). The 
fundamental frequency of a C-C supported FGM-1 circular 
plate is plotted in Fig. 2. The effective material properties 
and plate geometry is taken from Dong, (Dong, 2008). It is 
observed that the present results in good agreement with the 
three-dimensional solution using the Chebyshev–Ritz 
method Dong (2008). Based on the convergence results, it is 
observed that (18x16) mesh size is sufficient for the 
predicting free vibration results. 
The effects of Ro/h ratio on the fundamental frequency of 
FGM-2 S-S annular plate is plotted in Fig. 3. It is clearly 
seen that with increase in Ro/h ratio fundamental frequency 
increases and the effect of Ro/h ratio is negligible after 
Ro/h=50. 
 
The effect of grading index on the fundamental natural 
frequency of FGM-2 S-S annular plate is shown in Fig. 4. It 
is observed that fundamental frequency decreases with 
increase in grading index. 
 
The effect of Ri/Ro on the first six frequencies of FGM-2 
annular plate with S-S and C-C boundary condition is 
presented in Table 4 and Table 5, respectively. The 
geometric parameters (Ro/h=20, n=0.5) are considered for 
the study.  It is observed that with increasing Ri/Ro ratio 
natural frequency increases. It is notable that fundamental 
frequency for clamp boundary condition is greater than the 
simply supported boundary condition but follow the same 
trend. 
 

Table 1. Functionally graded material properties. 

Property 
FGM-1 FGM-2 

Metal (Al) Ceramic 
(Al2O3) 

Metal (Al) Ceramic 
(ZrO2) 

E (GPa) 70 380 70 151 
v 0.3 0.3 0.3 0.3 

ρ(kg/m3) 2707 3800 2707 3000 
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 Fig. 2. Convergence and comparison study of C-C FGM-
1 annular plate 

 
 

Fig. 3. Influences of Ro/h ratio on fundamental frequency 
of FGM-2 S-S circular plate with different porosity index 

(n=1, Ro=10, Ri =1)  
 
 
 

 
Fig. 4.  Influences of grading index on fundamental frequency of FGM-2 S-S circular plate with different porosity index 

(Ro=10, Ri = 3, Ro/h=10) 
 
 
 

Table 2. Convergence and validation studies of fundamental frequency of S-S isotropic circular plate 
 

Methods Modes 
 I II III IV V VI 
Present (10x8) 4.8926 13.8548 25.4288 29.9457 49.2279 69.9271 
Present (12x10) 4.9002 13.7605 25.6591 29.8811 41.3931 49.2661 
Present (14x12) 4.9058 13.7124 25.4949 29.841 40.4513 49.3601 
Present (16x14) 4.9101 13.6541 25.5612 29.8145 39.8385 49.4721 
Present (18x16) 4.9135 13.5868 25.5688 29.7956 39.9384 49.6281 
Present (20x18) 4.9162 13.495 25.5772 29.7813 39.9238 49.8776 
Mohammadi et al. (2013) 4.9345 13.898 25.613 29.72 39.957 48.479 
Nguyen et al. (2015) 4.9304 13.86 25.482 29.548 39.656 48.046 
Nguyen et al. (2015) 4.9304 13.859 25.48 29.539 39.633 48.005 
Thai et al. (2020) 4.9304 13.847 25.441 29.57 39.601 48.197 
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Table 3. Convergence and validation studies of fundamental frequency of C-C isotropic circular plate. 
 

Methods Modes 
I II III IV V VI 

Present (10x8) 10.2421 21.5615 34.7709 39.8025 61.2187 84.1527 
Present (12x10) 10.2302 21.5224 34.9939 39.7729 52.7139 61.1506 
Present (14x12) 10.2243 21.5355 34.7868 39.7585 51.5813 61.1721 
Present (16x14) 10.2210 21.5477 34.8487 39.7507 50.8645 61.199 
Present (18x16) 10.2189 21.5733 34.8467 39.746 50.9775 61.2455 
Present (20x18) 10.2176 21.6231 34.847 39.743 50.961 61.3302 
Mohammadi et al. (2013) 10.216 21.26 34.877 39.771 51.03 60.829 
Nguyen et al. (2015) 10.185 21.148 34.613 39.367 50.495 60.054 
Nguyen et al. (2015) 10.184 21.143 34.589 39.362 50.439 59.958 
Thai et al. (2020) 10.184 21.136 34.558 39.443 50.563 60.408 

Table 4. Influences of Ri/Ro ratio on fundamental frequency of S-S FGM circular plate with different annularity ratio. 
 

 
Table 5. Influences of Ri/Ro ratio on fundamental frequency of C-C FGM circular plate with different annularity ratio. 

 
Modes Ri/Ro ratio 

0 0.1 0.2 0.3 0.4 0.5 
I 9.1074 23.8442 30.1402 39.2044 52.8686 74.8135 
II 18.7729 25.1632 31.3717 40.2659 53.7693 75.5702 
III 30.6618 31.9081 36.2441 44.0163 56.7548 77.982 
IV 34.91 44.6118 46.2352 51.5578 62.4966 82.4225 
V 44.5345 60.0887 60.467 63.2251 71.502 89.2511 
VI 52.759 60.4674 60.8328 63.542 71.7525 89.4413 

 
 
5. Conclusions 
 
This study uses first order shear deformation theory to 
examine the free vibration analysis of FGM circular and 
annular plate. The effective material properties of FGM 
circular and annular plate along the thickness direction are 
calculated using power law. DQM method has been used to 
examine the results for simply supported and clamped 
boundary conditions. The convergence and comparison 
study of the present method are examined through the 
various examples present in the literatures. The effect of 
various grading index, radii ratio and radius to thickness 
ratio on free vibration of FGM circular and angular plate 
were studied and the results of this examination can be 
summarized as: 
• The present solution methodology is accurate and fast 

convergence rate  
• The increasing of the grading index results in the 

decrease of fundamental frequency. 
• The increasing of the radii ratio results in the rise of 

fundamental frequency. 
• The increasing of the radius to thickness ratio results in 

the rise of fundamental frequency. 
• The fundamental frequency for clamp boundary 

condition is greater than the simply supported boundary 
condition. 

The results introduced in this paper can fill in as benchmark 
solutions for future examination plate structure. 
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